Statistical Theory for the Study of Nonstationary Time Series by Wavelet Methods

小波方法研究非平稳时间序列的统计理论

基本信息

  • 批准号:
    15530139
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

1.The wavelet method is unfamiliar to most statistician ; so I wrote an introductory, but intuitively appealing chapter about wavelets for statisticians, where it was emphasized that the wavelet method can deal with time and scale (frequency) at the same time. This is impossible if we rely on either the time-domain or frequency-domain method.2.We first considered classical time-domain and frequency domain methods for estimating nonstationary and long-memory time series models. Then these methods were compared with the wavelet method. It was found that the former behave better when time series is stationary, but superiority is reversed when time series is nonstationary. The difference becomes larger as the degree of nonstationarity increases.3.The long-memory model contaminated by noise, which is often referred to as the long-memory signal plus noise model, was used to test if there really exists noise, by using the wavelet method The test statistic was derived on the basis of the existing principle, which gave us a very simple form. The wavelet-based test in the present case is useful for complementing the existing method.4.We took up three representative models for testing the random walk hypothesis, and devised wavelet-based tests. One is the AR(1) model ; another the ARFIMA model, and the other the state-space model. The distributions of the test statistics, however, still remain to be derived. Here we approximated them by simulations.5.We discussed the distribution of quadratic functionals of the fractional Brownian motion, which appears as a weak limit when we deal with a long-memory process. This is also an unsolved problem, but we gave an intuitive idea about the shape of the distribution. We also gave a conjecture about the moment of the distribution, which is a very neat result.
1.大多数统计学家都不熟悉小波方法,所以我为统计学家写了一个介绍性的,但直观上很吸引人的关于小波的章节,其中强调小波方法可以同时处理时间和尺度(频率)。这是不可能的,如果我们依赖于时域或频域的方法。2.我们首先考虑了经典的时域和频域方法估计非平稳和长记忆时间序列模型。并与小波方法进行了比较。研究发现,当时间序列是平稳的时,前者表现得更好,但当时间序列是非平稳的时,前者的优越性就相反了。随着非平稳程度的增加,这种差异越来越大。3.利用小波方法,将噪声污染的长记忆模型,即通常所说的长记忆信号加噪声模型,用于检验是否真的存在噪声。本文提出的小波检验方法是对已有方法的一种补充。4.选取了三种具有代表性的随机游走假设检验模型,设计了小波检验方法。一个是AR(1)模型,另一个是ARFIMA模型,另一个是状态空间模型。然而,检验统计量的分布仍有待推导。5.讨论了分数布朗运动的二次泛函的分布,它在处理长记忆过程时表现为一个弱极限。这也是一个未解决的问题,但我们给出了关于分布形状的直观想法。我们还给出了一个关于分布矩的猜想,这是一个非常简洁的结果。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applications of the wavelet analysis to statistics(in Japanese)
小波分析在统计学中的应用(日语)
田中 勝人: "ウェーブレット解析の統計学への応用について"数学. (未定). (2004)
Katsuto Tanaka:“小波分析在统计学中的应用”(待定)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Wavelet analysis(in Japanese)
小波分析(日语)
田中 勝人: "Frequency domain and wavelet-based estimation for long-memory signal plus noise models"Festschrift for Professor Durbin (Cambridge University Press). 75-91 (2004)
Katsuto Tanaka:“长记忆信号加噪声模型的频域和基于小波的估计”Durbin 教授的 Festschrift(剑桥大学出版社)75-91 (2004)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Cointegration analysis(in Japanese)
协整分析(日语)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TANAKA Katsuto其他文献

TANAKA Katsuto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TANAKA Katsuto', 18)}}的其他基金

Statistical Theory for Long-memory Property of Economic Time Series and Structural Breaks
经济时间序列长记忆性和结构性断裂的统计理论
  • 批准号:
    13630027
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STATISTICAL THEORY FOR HIGHER ORDER NONSTATIONARY INTEGRATED AND COINTEGRATED PROCESSES
高阶非平稳综合与协整过程的统计理论
  • 批准号:
    05630012
  • 财政年份:
    1993
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Statistical Theory and Application of Nonstationary and Noninvertible Time Series Model
非平稳不可逆时间序列模型的统计理论及应用
  • 批准号:
    01530014
  • 财政年份:
    1989
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Structural change in semiparametric long memory time series
半参数长记忆时间序列的结构变化
  • 批准号:
    17K13717
  • 财政年份:
    2017
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Statistical analysis of large dimensional long-memory time series and its applications
大维长记忆时间序列统计分析及其应用
  • 批准号:
    15K17038
  • 财政年份:
    2015
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The effect of structural changes to inference in long-memory time series
结构变化对长记忆时间序列推理的影响
  • 批准号:
    258395632
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Grants
Short Memory in Long Memory Time Series
长记忆时间序列中的短记忆
  • 批准号:
    1107225
  • 财政年份:
    2011
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Statistical Inference on Long-Memory Time Series and its Applications to Economic Data
长记忆时间序列的统计推断及其在经济数据中的应用
  • 批准号:
    23730209
  • 财政年份:
    2011
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A new class of statistical methods for analysing long memory time series models with heteroskedasticity
一类新的统计方法,用于分析具有异方差性的长记忆时间序列模型
  • 批准号:
    DP1094010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Projects
Long Memory Time Series Modelling: Computational and Statistical Efficiency, Nonstationarity/Noninvertibility and Goodness of Fit
长记忆时间序列建模:计算和统计效率、非平稳性/不可逆性和拟合优度
  • 批准号:
    0605132
  • 财政年份:
    2006
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Fractional Cointegration, Tapering and Estimation of Misspecified Models in Long Memory Time Series
长记忆时间序列中错误指定模型的分数协整、逐渐减少和估计
  • 批准号:
    0306726
  • 财政年份:
    2003
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Continuing Grant
Long-memory time series; its foundations and applications to economics.
长记忆时间序列;
  • 批准号:
    63530014
  • 财政年份:
    1988
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了