STATISTICAL THEORY FOR HIGHER ORDER NONSTATIONARY INTEGRATED AND COINTEGRATED PROCESSES
高阶非平稳综合与协整过程的统计理论
基本信息
- 批准号:05630012
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present research has extended over two years. I first describe the results obtained each year and then give perspectives for further research.1.1993I analyzed a time series regression model, where the regressors are highly nonstationary and follow integrated processes. In particular statistics arising from processes of integration order greater than 1 are studied, and their limiting distributions are found and computed. In terms of numerical computation it is hard to deal with such higher order integrated processes, but I have devised a method for overcoming such difficulties. On the other hand I have found that the case of integration order of 1 is quite exceptional in terms of distribution theory, which corresponds, so to speak, to a singular point.2.1994A new testing procedure for testing if there exists cointegration among highly nonstationary variables. While conventional tests take no cointegration as the null, the suggested test takes cointegration as the null. I have derived, not only the limiting null, but also the limiting distributions under a sequence of local alternatives. The corresponding percent points are also computed.3. On the basis of the above and other results I could write a manuscript during the term of project, which is to be published shortly. For further research I would like to suggest a method which enables us to deal with more complicated statistics than those analyzed in the present project. It is certaily difficult to do so as in the standard case, but I will try to find a clue to this extended problem.
目前的研究已经持续了两年多。我首先描述了每年获得的结果,然后给出进一步研究的前景。1.1993我分析了一个时间序列回归模型,其中回归量是高度非平稳的,并遵循综合过程。特别是统计所产生的过程中的集成顺序大于1进行了研究,并发现和计算其极限分布。在数值计算方面,很难处理这样的高阶积分过程,但我已经设计了一种方法来克服这些困难。另一方面,我发现,1的集成顺序的情况下是非常例外的分布理论,这对应于,可以这么说,一个奇异点。2.1994年一个新的测试程序,用于测试,如果存在高度非平稳变量之间的协整。传统的检验将不存在协整作为空值,而建议的检验将协整作为空值。我不仅导出了极限零点,而且还导出了在一个局部选择序列下的极限分布。也计算了相应的百分点。在上述和其他结果的基础上,我可以在项目期间写一份手稿,不久将出版。为了进一步研究,我想提出一种方法,使我们能够处理比本项目中分析的更复杂的统计数据。在标准情况下,这样做肯定很困难,但我将试图找到这个扩展问题的线索。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
with M.Huzii, N.Watanabe, H.Sakai and R.Kawashima: ""Recent developments and perspectives of statistical time series analysis, " (in Japanese)" Journal of the Japan Statistical Society. vol.22. 375-411 (1993)
与 M.Huzii、N.Watanabe、H.Sakai 和 R.Kawashima 合作:“统计时间序列分析的最新发展和观点”(日语)“日本统计学会杂志”。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤井光昭,渡辺則生,田中勝人,酒井英昭,川島利兵衛: "統計的時系列分析の現状と展望" 日本統計学会誌. 22. 375-411 (1993)
Mitsuaki Fujii、Norio Watanabe、Katsuto Tanaka、Hideaki Sakai、Rihei Kawashima:“统计时间序列分析的现状和前景”日本统计学会杂志 22. 375-411 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
""The optimality of extended score testes with applications to testing for a moving average unit root, " in Advances in Econometrics and Qualitative Economics" Maddala, G.S.Phillips P.C.B.and Srinivasan, T.N., eds., (Blackwell, Oxford). (1995)
“扩展分数睾丸的最优性及其在移动平均单位根测试中的应用”,《计量经济学和定性经济学进展》,Maddala, G.S.Phillips P.C.B. 和 Srinivasan, T.N. 编辑,(Blackwell,牛津)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
藤井光昭,田中勝人他3名: "統計的時系列分析の現状と展望" 日本統計学会誌. 22. 375-411 (1993)
Mitsuaki Fujii、Katsuto Tanaka 等 3 人:“统计时间序列分析的现状和前景”日本统计学会杂志 22. 375-411 (1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田中勝人: "Nonstationary and Noninvertible Time Series Analysis:A Distribution Theory" John Wiley(予定), (1995)
Katsuto Tanaka:“非平稳和不可逆时间序列分析:分布理论”John Wiley(计划),(1995 年)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANAKA Katsuto其他文献
TANAKA Katsuto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANAKA Katsuto', 18)}}的其他基金
Statistical Theory for the Study of Nonstationary Time Series by Wavelet Methods
小波方法研究非平稳时间序列的统计理论
- 批准号:
15530139 - 财政年份:2003
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Theory for Long-memory Property of Economic Time Series and Structural Breaks
经济时间序列长记忆性和结构性断裂的统计理论
- 批准号:
13630027 - 财政年份:2001
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Theory and Application of Nonstationary and Noninvertible Time Series Model
非平稳不可逆时间序列模型的统计理论及应用
- 批准号:
01530014 - 财政年份:1989
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Cointegration, Self- and Mutual- Excitation and Applications to Asset Pricing and Investment Theories
协整、自激和互激励及其在资产定价和投资理论中的应用
- 批准号:
23K01332 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural Breaks in the Panel Data Cointegration Model
面板数据协整模型的结构断裂
- 批准号:
23730214 - 财政年份:2011
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The influence of volatility and endogeneity in economic time series on cointegration analysis
经济时间序列波动性和内生性对协整分析的影响
- 批准号:
23730220 - 财政年份:2011
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Likelihood-Based Panel Cointegration Methodology and Its Applications in Macroeconomics and Financial Market Analysis
基于可能性的面板协整方法及其在宏观经济和金融市场分析中的应用
- 批准号:
142071153 - 财政年份:2009
- 资助金额:
$ 1.28万 - 项目类别:
Research Grants
Properties of cointegration tests in misspecified nonlinear models
错误指定的非线性模型中协整检验的属性
- 批准号:
20730146 - 财政年份:2008
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cointegration Analysis of I(2) Non-Stationary Time Series Data
I(2)非平稳时间序列数据的协整分析
- 批准号:
19830111 - 财政年份:2007
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Young Scientists (Start-up)
Fractional Cointegration, Tapering and Estimation of Misspecified Models in Long Memory Time Series
长记忆时间序列中错误指定模型的分数协整、逐渐减少和估计
- 批准号:
0306726 - 财政年份:2003
- 资助金额:
$ 1.28万 - 项目类别:
Continuing Grant
Unit roots and cointegration in panel data
面板数据中的单位根和协整
- 批准号:
5396459 - 财政年份:2002
- 资助金额:
$ 1.28万 - 项目类别:
Research Grants
Minimum Distance Methods for Models with Cointegration in Time Series and Short Panels
时间序列和短面板中协整模型的最小距离方法
- 批准号:
9720675 - 财政年份:1998
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Accomplishment Based Renewal of: Autoregressive Conditional Duration, Arch, Common Features, and Cointegration
基于成就的更新:自回归条件持续时间、拱形、共同特征和协整
- 批准号:
9730062 - 财政年份:1998
- 资助金额:
$ 1.28万 - 项目类别:
Continuing Grant