The research on Optimal media selection models Using Data Envelopment Analysis and neural networks

基于数据包络分析和神经网络的最优媒体选择模型研究

基本信息

  • 批准号:
    15530293
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

We surveyed the works concerning about media selection models from the point of data envelopment analysis and neural networks. we checked some academic journals like Management Science, Marketing Science, Journal of Marketing research, Journal of Marketing etc. At the same time we also surveyed data envelopment analysis and neural networks themselves so as to follow their development.Many advertising Campaign data were collected from several sources and they are restructured in order to be analysed for our research. After some screening processes, 61 advertising campaign data were available for our analysis.We developed the optimal media selection model using data envelopment analysis model based on Stochastic frontier. The merit of model that we developed does not need the estimation of functional form. Using the artificial data we generate by monte-carlo simulation, we found our model can obtain better result than parametric method based on the regression analysis in the problem with implicitly not only Cobb-Douglas and concave frontier function but also non-Cobb-Douglas and concave frontier function.By applying our model to advertising campaign data, we got the optimal solution. After the presentation at the conference of The Japan Institute of Marketing Science, some member of advertising agency set a high valuation on our approach.As for neural network, we searched many package soft for neural network. we were able to get some, the Enterprise Miner of SAS Institute, Clementine of SPSS, S-PLUS and the Predict of Neuralware.Using sample data we investigate the prediction ability of each package soft. Among them, it become clear that the Predict of Neuralware outperform the other three softs from the point of the simplicity to use and the accurate output from it.
我们从数据包络分析和神经网络的角度对有关媒体选择模型的工作进行了调查。我们查阅了一些学术期刊,如 Management Science、Marketing Science、Journal of Marketing Research、Journal of Marketing 等。同时我们还调查了数据包络分析和神经网络本身,以跟踪它们的发展。许多广告活动数据是从多个来源收集的,并进行了重组,以便为​​我们的研究进行分析。经过一些筛选过程,我们得到了 61 个广告活动数据可供我们分析。我们使用基于随机前沿的数据包络分析模型开发了最优媒体选择模型。我们开发的模型的优点是不需要函数形式的估计。使用我们通过蒙特卡罗模拟生成的人工数据,我们发现我们的模型在隐含柯布-道格拉斯和凹前沿函数以及非柯布-道格拉斯和凹前沿函数的问题上比基于回归分析的参数方法可以获得更好的结果。通过将我们的模型应用于广告活动数据,我们得到了最优解。在日本营销科学研究所的会议上发表后,一些广告公司的成员对我们的方法给予了很高的评价。 至于神经网络,我们搜索了很多神经网络的软件包。我们得到了一些,SAS研究所的Enterprise Miner,SPSS的Clementine,S-PLUS和Neuralware的Predict。使用样本数据我们考察了每个包软件的预测能力。其中,从使用的简单性和输出的准确度来看,Neuralware的Predict明显优于其他三个软件。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic Frontier Model for Advertising Planning : A DEA Approach
广告策划的随机前沿模型:DEA 方法
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eiji Takeda;Katsuaki Tanaka
  • 通讯作者:
    Katsuaki Tanaka
経済・経営分析のためのEXCEL入門新版
用于经济和商业分析的 EXCEL 新版本介绍
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    島田達巳;久保貞也;田中 克明
  • 通讯作者:
    田中 克明
Eiji Takeda, Katsuki Tanaka: "Stochastic Frontier Model for Advertising Planning : A DEA Aproach"大阪大学経済学. 53巻3号. 291-306 (2003)
Eiji Takeda、Katsuki Tanaka:“广告策划的随机前沿模型:DEA 方法”大阪大学经济学,第 53 卷,第 3 期。291-306 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TANAKA Katsuaki其他文献

TANAKA Katsuaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TANAKA Katsuaki', 18)}}的其他基金

Central nervous system effect of local anesthetics : Influences on electroencephalogram and electroencephalographic changes induced by co-administered opioids
局麻药的中枢神经系统作用:对脑电图的影响以及联合使用阿片类药物引起的脑电图变化
  • 批准号:
    21791468
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Extraction and reorganization of topic transition patterns in recorded document
记录文档中主题转换模式的提取和重组
  • 批准号:
    20700129
  • 财政年份:
    2008
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on Japanese corporate ratings by Rating agencies with Artificial Neural Network and Self-organizing Maps
基于人工神经网络和自组织图的评级机构日本企业评级研究
  • 批准号:
    19530374
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Differential diagnosis of hepatic tumors by pattern-based classification according to Bayes theorem
根据贝叶斯定理基于模式的分类对肝脏肿瘤的鉴别诊断
  • 批准号:
    16590612
  • 财政年份:
    2004
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Uprequlation of anti-HCV activity
抗 HCV 活性上调
  • 批准号:
    12670505
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Use of Data Envelopment Analysis to Create Benchmarks for the transition from acute to inpatient care in stroke patients
使用数据包络分析为中风患者从急性护理过渡到住院护理创建基准
  • 批准号:
    428668
  • 财政年份:
    2019
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Studentship Programs
Personalized preventive medicine using data envelopment analysis
使用数据包络分析的个性化预防医学
  • 批准号:
    17K09152
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Eco-Efficiency Analysis of Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis
日本水稻生产的生态效率分析:生命周期评估和数据包络分析的联合应用
  • 批准号:
    17K07971
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Efficiency evaluation of regional core human resource development process by data envelopment analysis
基于数据包络分析的区域核心人力资源开发流程效率评价
  • 批准号:
    16K03632
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of Bank Branch Growth Potential using Data Envelopment Analysis and Machine Learning Techniques applied to Big Data
使用应用于大数据的数据包络分析和机器学习技术评估银行分行的增长潜力
  • 批准号:
    443109-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of Bank Branch Growth Potential using Data Envelopment Analysis and Machine Learning Techniques applied to Big Data
使用应用于大数据的数据包络分析和机器学习技术评估银行分行的增长潜力
  • 批准号:
    443109-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了