Geometry of mirror symmetry and string theory

镜像对称几何和弦理论

基本信息

项目摘要

In this research project, the following results are obtained regarding non-compact Calabi-Yau varieties, their period integrals and differential equations satisfied them.Firstly, when a Calabi-Yau variety is given as the c_1 = 0 resolution of the singularity C^2/Z_<μ+1>, it is found that the period integrals are very close to the so-called primitive forms introduced by K.Saito. Since the period integrals are invariant under certain torus actions, we found that they satisfy a system of differential equations called Gel'fand-Kapranov-Zelvinski (GKZ) system. As a result we obtained a way to rephrase the theory of the primitive forms in terms of the GKZ system. It is known that the monodromy of the primitive forms is given by the Weyl group of the A_n root system. In our case, it is found that this Weyl group action is extended too the corresponding affine Weyl group actions on the period integrals.Secondly, we studied the cases of three dimensional singularity C^3/G (G⊂SL(3,C) : a finite abelian group) and its c_1 = 0 resolutions. We obtained a precise definition of the period integrals and their characterization in terms of the GKZ systems. We observed that the monodromy of the period integrals is closely related to the McKay correspondence which connects the representation theory to algebraic geometry. Namely, under mirror symmetry, the McKay correspondence is transformed to the theory of transcendental cycles, and for example, Fourier-Mukai transforms on the derived category of coherent sheaves appear as the monodromy of the period integrals. We verified this 'mirror monodromy relations' in explicit examples. This monodromy property has been made precise as a mathematical conjecture in terms of certain hypergeometric series taking its values in the relevant cohomology group.
本研究项目对非紧的Calabi-Yau簇及其周期积分和微分方程得到了如下结果:首先,当给定一个Calabi-Yau簇作为奇点C^2/Z_<μ+1>的c_1 = 0分解时,发现其周期积分非常接近于K. Saito引入的所谓的原始形式;由于周期积分在某些环面作用下是不变的,我们发现它们满足一个称为Gelfand-Kapranov-Zelvinski(GKZ)系统的微分方程组。结果,我们得到了一种用GKZ系统重新表述原始形式理论的方法。已知A_n根系的Weyl群给出本原型的单值性。其次,我们研究了三维奇异性C^3/G(G ∈ SL(3,C):有限交换群)及其c_1 = 0分解的情形。我们得到了周期积分的精确定义及其在GKZ系统上的刻画。我们观察到,monodromy的周期积分是密切相关的McKay对应连接的表示理论,代数几何。也就是说,在镜像对称下,McKay对应被转化为超越循环理论,例如,在相干层的导出范畴上的Fourier-Mukai变换表现为周期积分的单值性。我们验证了这种“镜像单值关系”在明确的例子。这种单值性已经被精确地作为一种数学猜想,在某些超几何级数的相关上同调群中取其值。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Hosono, B.H.Lian, K.Oguiso, S.-T.Yau: "Kummer Structures on a K3 surface-an old question of T.Shioda"Duke Math.J.. 120. 635-687 (2003)
S.Hosono、B.H.Lian、K.Oguiso、S.-T.Yau:“K3 表面上的 Kummer 结构 - T.Shioda 的一个老问题”Duke Math.J.. 120. 635-687 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Autoequiucilences of a K3 surface and monodrony transformations
K3 曲面的自等价性和单数变换
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Hosono;B.H.Lian;K.Oguiso;S.-T.Yau
  • 通讯作者:
    S.-T.Yau
S.Hosono: "Counting BPS states via holomorphic anomaly equations"Fields Inst.Commun.. 38. 57-86 (2003)
S.Hosono:“通过全纯异常方程计算 BPS 状态”Fields Inst.Commun.. 38. 57-86 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Autoequivalences of a K3 surface and monodromy transformations
K3 曲面的自等价性和单性变换
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Hosono;B.H.Lian;K.Oguiso;S.-T.Yau
  • 通讯作者:
    S.-T.Yau
S.Hosono, B.H.Lian, K.Oguiso, S.-T.Yau: "C=2 rational toroidal conformal field theories via Gauss product"Commun.Math.Phys.. 241. 245-286 (2003)
S.Hosono、B.H.Lian、K.Oguiso、S.-T.Yau:“通过高斯积的 C=2 有理环形共形场理论”Commun.Math.Phys.. 241. 245-286 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HOSONO Shinobu其他文献

HOSONO Shinobu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HOSONO Shinobu', 18)}}的其他基金

Period integrals, mirror symmetry, and the geometry of Gromov-Witten invariants
周期积分、镜像对称和 Gromov-Witten 不变量的几何
  • 批准号:
    22540041
  • 财政年份:
    2010
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Period integrals, derived categories, and geometries of Moduli spaces
模空间的周期积分、派生范畴和几何
  • 批准号:
    18540014
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
  • 批准号:
    EP/Y033574/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
  • 批准号:
    2316538
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Fellowship Award
A Non-Archimedean Approach to Mirror Symmetry
镜像对称的非阿基米德方法
  • 批准号:
    2302095
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
  • 批准号:
    EP/X032779/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Fellowship
Nuclear mirror symmetry
核镜像对称
  • 批准号:
    2887551
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
Brauer group and homological mirror symmetry
布劳尔群和同调镜像对称
  • 批准号:
    23KJ0341
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mirror symmetry and quiver flag varieties
镜像对称和箭袋旗品种
  • 批准号:
    DGECR-2022-00436
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Launch Supplement
Windows and Mirror Symmetry
窗口和镜像对称
  • 批准号:
    RGPIN-2022-03400
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
  • 批准号:
    RGPIN-2019-04000
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in mirror symmetry and symplectic topology
镜像对称和辛拓扑主题
  • 批准号:
    2746276
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了