Geometry of mirror symmetry and string theory

镜像对称几何和弦理论

基本信息

项目摘要

In this research project, the following results are obtained regarding non-compact Calabi-Yau varieties, their period integrals and differential equations satisfied them.Firstly, when a Calabi-Yau variety is given as the c_1 = 0 resolution of the singularity C^2/Z_<μ+1>, it is found that the period integrals are very close to the so-called primitive forms introduced by K.Saito. Since the period integrals are invariant under certain torus actions, we found that they satisfy a system of differential equations called Gel'fand-Kapranov-Zelvinski (GKZ) system. As a result we obtained a way to rephrase the theory of the primitive forms in terms of the GKZ system. It is known that the monodromy of the primitive forms is given by the Weyl group of the A_n root system. In our case, it is found that this Weyl group action is extended too the corresponding affine Weyl group actions on the period integrals.Secondly, we studied the cases of three dimensional singularity C^3/G (G⊂SL(3,C) : a finite abelian group) and its c_1 = 0 resolutions. We obtained a precise definition of the period integrals and their characterization in terms of the GKZ systems. We observed that the monodromy of the period integrals is closely related to the McKay correspondence which connects the representation theory to algebraic geometry. Namely, under mirror symmetry, the McKay correspondence is transformed to the theory of transcendental cycles, and for example, Fourier-Mukai transforms on the derived category of coherent sheaves appear as the monodromy of the period integrals. We verified this 'mirror monodromy relations' in explicit examples. This monodromy property has been made precise as a mathematical conjecture in terms of certain hypergeometric series taking its values in the relevant cohomology group.
在该研究项目中,获得了以下结果,这些结果是关于非紧缩的calabi-yau品种,它们的周期积分和微分方程所满足它们的。由于该周期积分在某些圆环动作下是不变的,因此我们发现它们满足了一个称为Gel'Fand-Kapranov-Zelvinski(GKZ)系统的微分方程系统。结果,我们获得了一种根据GKZ系统来重塑原始形式理论的方法。众所周知,原始形式的单片由A_N根系的Weyl群给出。在我们的情况下,发现这种Weyl组的作用也扩展了相应的仿生Weyl组在周期积分上的作用。第二,我们研究了三维奇异性C^3/g(g⊂sl(3,c):有限的abelian群体)及其C_1 = 0分辨率的情况。我们在GKZ系统方面获得了周期积分及其表征的精确定义。我们观察到,该时期积分的单片与将表示理论与代数几何形状联系起来的McKay对应关系密切相关。也就是说,在镜像对称性下,McKay对应关系转化为先验周期的理论,例如,在衍生的相干滑轮类别上的傅立叶 - 木叶变换似乎是周期积分的单片。我们在明确的例子中验证了这种“镜像单片关系”。根据某些超小几幅序列,将其作为数学猜想确定为数学猜想。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Hosono, B.H.Lian, K.Oguiso, S.-T.Yau: "Kummer Structures on a K3 surface-an old question of T.Shioda"Duke Math.J.. 120. 635-687 (2003)
S.Hosono、B.H.Lian、K.Oguiso、S.-T.Yau:“K3 表面上的 Kummer 结构 - T.Shioda 的一个老问题”Duke Math.J.. 120. 635-687 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Hosono: "Counting BPS states via holomorphic anomaly equations"Fields Inst.Commun.. 38. 57-86 (2003)
S.Hosono:“通过全纯异常方程计算 BPS 状态”Fields Inst.Commun.. 38. 57-86 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Autoequiucilences of a K3 surface and monodrony transformations
K3 曲面的自等价性和单数变换
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Hosono;B.H.Lian;K.Oguiso;S.-T.Yau
  • 通讯作者:
    S.-T.Yau
S.Hosono, B.H.Lian, K.Oguiso, S.-T.Yau: "C=2 rational toroidal conformal field theories via Gauss product"Commun.Math.Phys.. 241. 245-286 (2003)
S.Hosono、B.H.Lian、K.Oguiso、S.-T.Yau:“通过高斯积的 C=2 有理环形共形场理论”Commun.Math.Phys.. 241. 245-286 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Autoequivalences of a K3 surface and monodromy transformations
K3 曲面的自等价性和单性变换
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Hosono;B.H.Lian;K.Oguiso;S.-T.Yau
  • 通讯作者:
    S.-T.Yau
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HOSONO Shinobu其他文献

HOSONO Shinobu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HOSONO Shinobu', 18)}}的其他基金

Period integrals, mirror symmetry, and the geometry of Gromov-Witten invariants
周期积分、镜像对称和 Gromov-Witten 不变量的几何
  • 批准号:
    22540041
  • 财政年份:
    2010
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Period integrals, derived categories, and geometries of Moduli spaces
模空间的周期积分、派生范畴和几何
  • 批准号:
    18540014
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
  • 批准号:
    EP/Y033574/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
  • 批准号:
    2316538
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Fellowship Award
A Non-Archimedean Approach to Mirror Symmetry
镜像对称的非阿基米德方法
  • 批准号:
    2302095
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
  • 批准号:
    EP/X032779/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Fellowship
Nuclear mirror symmetry
核镜像对称
  • 批准号:
    2887551
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了