Period integrals, mirror symmetry, and the geometry of Gromov-Witten invariants

周期积分、镜像对称和 Gromov-Witten 不变量的几何

基本信息

  • 批准号:
    22540041
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2010
  • 资助国家:
    日本
  • 起止时间:
    2010-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mathematical aspects of two sphere partition functions
两个球体配分函数的数学方面
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Yoshiya;K. Nakajima;M. Watanabe;T. Nagira;H. Yasuda;S. Hosono
  • 通讯作者:
    S. Hosono
Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners
傅里叶-向凯合伙人的镜像对称与射影几何
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinobu Hosono and Hiromichi Takagi;Shinobu Hosono and Hiromichi Takagi;Shinobu Hosono and Hiromichi Takagi;Shinobu Hosono and Hiromichi Takagi
  • 通讯作者:
    Shinobu Hosono and Hiromichi Takagi
Mirror symmetry of determinantal quintics
行列五次方程的镜像对称性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Hara;T.Sawada;Shinobu Hosono
  • 通讯作者:
    Shinobu Hosono
BPS numbers and projective geometry of Reye congruences
BPS 数和 Reye 同余的射影几何
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田村 純一;安冨 真一;田村 純一;安冨 真一;N. Hara;Shin-ichi YASUTOMI;Shinobu Hosono
  • 通讯作者:
    Shinobu Hosono
Exploring new structures and natural constructions in mathematical physics
  • DOI:
    10.2969/aspm/06110000
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    浩司 長谷川;林 孝宏;細野 忍;山田 泰彦
  • 通讯作者:
    浩司 長谷川;林 孝宏;細野 忍;山田 泰彦
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HOSONO Shinobu其他文献

HOSONO Shinobu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HOSONO Shinobu', 18)}}的其他基金

Period integrals, derived categories, and geometries of Moduli spaces
模空间的周期积分、派生范畴和几何
  • 批准号:
    18540014
  • 财政年份:
    2006
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of mirror symmetry and string theory
镜像对称几何和弦理论
  • 批准号:
    15540010
  • 财政年份:
    2003
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
Floer理論に立脚したミラー対称性予想にまつわる幾何学の新展開
基于Floer理论的镜像对称猜想相关几何学新进展
  • 批准号:
    23K20796
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
Conference: Symmetry and Geometry in South Florida
会议:南佛罗里达州的对称与几何
  • 批准号:
    2350239
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
  • 批准号:
    MR/Y034007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Fellowship
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
  • 批准号:
    2345644
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Continuing Grant
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
  • 批准号:
    24K06852
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
  • 批准号:
    EP/Y033574/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Research Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了