Representation theory of algebraic groups via algebraic analysis
通过代数分析的代数群表示论
基本信息
- 批准号:15540041
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Tanisaki investigated on the quantized flag manifolds, especially at roots of 1. He has formulated a conjecture which can be regarded as an analogue of the result of Bezrukavnikov-Mirkovic-Ryuminin about the correspondence of representations and D-modules on the flag manifold in positive characteristics. This is different from recent works of Backelin-Kremnitzer and Mirkovic. It should be solved in the near future although there are some problems to be overcome. He also extended a result of Soergel about the ring of differential operators on the partial flag manifold of reductive algebraic groups and obtained similar results for differential operators acting on vector bundles. Furthermore, he considered about parabolic analogue of Soergel's result on the center of category O.2. Kashiwara showed that the crystal base of some finite dimensional representation of affine quantum group with fundamental weight as its external weight is isomorphic to that of the Demazure module of irreducible module with level 1 highest weight.3. Ariki has shown that the representation types of the classical Hecke algebras are governed by the Poincare polynomials.4. Nakajima proved that the first tern of the Necrasov partition function coincides with the pro-potential of Seidberg-Written.5. Shoji has solved Lusztig's conjecture on the characters of the special linear groups over finte fields. Moreover, he determined the scalar appearing in the conjecture.6. Kaneda investigated on the correspondence between D-modules on flag varieties in positive characteristics and representations of the corresponding algebraic groups. He formulated a certain derived equivalence in terms of arithmetic differential operators due to Berthelot., and obtained some results in the case of the projective space.7. Ichino investigated on the diagonal restriction of Saito-Kurokawa lift, and proved the algebraicity of a special value of a certain L-function.
1.谷崎研究了量子化旗形,特别是在1的根处。他提出了一个猜想,这个猜想可以看作是Bezrukavnikov-Mirkovic-Ryumin关于正特征的旗形上的表示与D-模的对应的一个类似的结果。这与巴克林-克雷姆尼策和米尔科维奇最近的作品不同。虽然还有一些问题需要克服,但它应该在不久的将来得到解决。他还推广了Soerel关于约化代数群的部分旗形上的微分算子环的一个结果,并对作用于向量丛的微分算子得到了类似的结果。此外,他还考虑了在范畴o2的中心抛物线类比Soerel的结果。Kashiwara证明了以基本权为外权的仿射量子群的有限维表示的晶基与1阶最高权的不可约模的Demazure模的晶基同构。Ariki证明了经典Hecke代数的表示类型是由Poincare多项式决定的。Nakajima证明了Necrasov配分函数的第一阶与Seidberg-Written的PRO势重合。Shoji解决了Lusztig关于有限域上特殊线性群特征标的猜想。此外,他确定了猜想中出现的标量。Kaneda研究了具有正特征的旗簇上的D-模与相应代数群的表示之间的对应关系。由于Berthelot,他在算术微分算子方面建立了一定的导出等价,并在射影空间的情况下得到了一些结果。Ichino研究了Saito-Kurokawa提升的对角限制,并证明了一类L函数的特定值的代数性。
项目成果
期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Nakajima: "t-analogs of q-characters of quantum affine algebras of type A_n, D_n"Contemp.Mathematics. 325. 141-160 (2003)
H.Nakajima:“A_n、D_n 型量子仿射代数的 q 字符的 t 类似物”当代数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Character formulas of Kazhdan-Lusztig type
Kazhdan-Lusztig 类型的特征公式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Tanisaki
- 通讯作者:T.Tanisaki
C.Marastoni: "Radon transforms for quasi-equivariant D-modules on generalized flag manifolds"Differential geometry and its applications. 18(2). 147-176 (2003)
C.Marastoni:“广义旗流形上准等变 D 模的 Radon 变换”微分几何及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Extremal weight modules of quantum affine algebras
量子仿射代数的极值权模
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Tanisaki;T.Shoji;N.Nakajima
- 通讯作者:N.Nakajima
Realizations of Crystals
晶体的实现
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:T.Tanisaki;T.Shoji;N.Nakajima;T.Tanisaki;T.Shoji;N.Nakajima;T.Tanisaki;B.Feigin;S.Ariki;Y.Saito;C.Marastoni;M.Kashiwara
- 通讯作者:M.Kashiwara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANISAKI Toshiyuki其他文献
TANISAKI Toshiyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANISAKI Toshiyuki', 18)}}的其他基金
Research on the representation theory of algebraic groups using algebraic analysis
利用代数分析研究代数群的表示论
- 批准号:
24540026 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
D-modules on infinite-dimensional algebraic varieties and their application to representation theory
无限维代数簇的 D 模及其在表示论中的应用
- 批准号:
21654005 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Research on representation theory of algebraic groups and quantum groups via algebraic analysis
基于代数分析的代数群和量子群表示论研究
- 批准号:
19340010 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Lie algebras and quantum groups via algebraic analysis
通过代数分析的李代数和量子群
- 批准号:
17340012 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation theory of Lie algebras and quantum groups
李代数和量子群的表示论
- 批准号:
13440010 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation theory of algebraic groups through algebraic analysis
通过代数分析的代数群表示论
- 批准号:
11440009 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Represontation theory of algebraic groups
代数群的表示论
- 批准号:
09440018 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 2.24万 - 项目类别:
Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Australian Laureate Fellowships
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
- 批准号:
24K00093 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
- 批准号:
2339071 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
- 批准号:
2336998 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant