Represontation theory of algebraic groups
代数群的表示论
基本信息
- 批准号:09440018
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Highest weight modules over affine Lie algebrasThe head organizer and Masaki Kashiwara investigated on characters of irreducible highest weight modules over affine Lie algebras. We first proved Kazhdan-Lusztig type character formula for the irreducible modules with rational non-critical highest weights, and next generalized it to arbitrary non-critical weights. One of the next problems is to determine characters of the irreducible modules with critical highest weights and to investigate its geometyric back ground.2. Generalized hypergeometric systems and Radon-Penrose transforms.The head organizer investigated on Radon-Penrose transforms between flag manifolds using the theory of weakly equivariant D-modules, and gave sufficient conditions in order that it is injective or surjective in the sence of the D-module theory. Moreover, I studied the condition in each indivisual cases. One of the next problems is to determin the image and the kernel of the Radon transform.3. Quantum deformations of prehomogeneous vector spacesThe head organizer and Yoshiyuki Morita constructed quantum deformations for the coordinate algebras of the prehomogenous vector spaces of parabolic type. Morita further applied this result to exceptional simple Lie algebras, and gave an explicit description of the quantume deformation of the exceptional prehomogeneous vector spaces and its relative invariants.One of the next problems are to investigate of the quantum counter part of the theory of prehomogeneous vector spaces related to number theoretic direction such as zeta functions.
1. Head Organizer和Masaki Kashiwara研究了仿射李代数上不可约最高权模的特征。首先证明了具有有理非临界最高权的不可约模的Kazhdan-Lusztig型特征标公式,然后将其推广到任意非临界权。接下来的问题之一是确定具有临界最高权的不可约模的特征标,并研究其几何背景.广义超几何系统与Radon-Penrose变换:主要作者利用弱等变D-模理论研究了旗流形之间的Radon-Penrose变换,给出了在D-模理论意义下它是内射或满射的充分条件。此外,我还研究了每个个案中的条件。接下来的问题之一是确定Radon变换的图像和核。Head Organizer和Yoshiyuki Morita构造了抛物型预齐次向量空间坐标代数的量子形变。Morita进一步将这一结果应用于例外单李代数,并给出了例外预齐次向量空间的量子形变及其相对不变量的明确描述。接下来的问题之一是研究与数论方向有关的预齐次向量空间理论的量子计数器部分,如zeta函数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Sumihiro: "Determinantal varieties associated to rank two vector bundles on projectine spaces and splitting theorems" Hiroshima Mathematical Journal. (1999)
H.Sumihiro:“与投影空间上的两个向量束排序相关的行列式簇和分裂定理”广岛数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Rings and fields Vol.3. Iwanami Shoten, Publishers., 148 (1998)
圆环与领域 Vol.3。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Kamita: "Quantum deformations of certain prehomogeneous vector spaces I." Hiroshima Mathematical Journal.Vol.28. 527-540 (1998)
A.Kamita:“某些预均匀向量空间 I 的量子变形。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Tanisaki: "Highest weight modules associated to parabolic sulgioups with comnutatiug unepotent radiccls" Algebraic groups and their representations. 73-90 (1998)
T.Tanisaki:“与抛物线 sulgioups 相关的最高权重模块与 commutatiug unepoter radiccls”代数群及其表示。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANISAKI Toshiyuki其他文献
TANISAKI Toshiyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANISAKI Toshiyuki', 18)}}的其他基金
Research on the representation theory of algebraic groups using algebraic analysis
利用代数分析研究代数群的表示论
- 批准号:
24540026 - 财政年份:2012
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
D-modules on infinite-dimensional algebraic varieties and their application to representation theory
无限维代数簇的 D 模及其在表示论中的应用
- 批准号:
21654005 - 财政年份:2009
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Research on representation theory of algebraic groups and quantum groups via algebraic analysis
基于代数分析的代数群和量子群表示论研究
- 批准号:
19340010 - 财政年份:2007
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Lie algebras and quantum groups via algebraic analysis
通过代数分析的李代数和量子群
- 批准号:
17340012 - 财政年份:2005
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation theory of algebraic groups via algebraic analysis
通过代数分析的代数群表示论
- 批准号:
15540041 - 财政年份:2003
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of Lie algebras and quantum groups
李代数和量子群的表示论
- 批准号:
13440010 - 财政年份:2001
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation theory of algebraic groups through algebraic analysis
通过代数分析的代数群表示论
- 批准号:
11440009 - 财政年份:1999
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
相似海外基金
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1902226 - 财政年份:2019
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Categorical representations of Lie algebras and quantum groups and applications to modular representations
李代数和量子群的分类表示及其在模表示中的应用
- 批准号:
17K14154 - 财政年份:2017
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1601947 - 财政年份:2016
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
- 批准号:
227312-2009 - 财政年份:2013
- 资助金额:
$ 5.5万 - 项目类别:
Discovery Grants Program - Individual
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1201391 - 财政年份:2012
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
- 批准号:
227312-2009 - 财政年份:2012
- 资助金额:
$ 5.5万 - 项目类别:
Discovery Grants Program - Individual
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
- 批准号:
227312-2009 - 财政年份:2011
- 资助金额:
$ 5.5万 - 项目类别:
Discovery Grants Program - Individual
Travel Support: Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
旅行支持:无限维李代数、量子群及其应用
- 批准号:
1059160 - 财政年份:2010
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
- 批准号:
227312-2009 - 财政年份:2010
- 资助金额:
$ 5.5万 - 项目类别:
Discovery Grants Program - Individual
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
- 批准号:
227312-2009 - 财政年份:2009
- 资助金额:
$ 5.5万 - 项目类别:
Discovery Grants Program - Individual