PROBLEMS ON THE HYDRODYNAMIC LIMIT AND RELATED TOPICS
流体力学极限问题及相关主题
基本信息
- 批准号:15540109
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 2003 introducing a lattice gas model, called zero-range-exclusion model, which possesses two conservative quantities, we obtained an estimate of the spectral gap for the model [cf. An estimate of the spectral gap for zero-range-exclusion dynamics, Osaka Jour.Math. 141(no.4) (2004)]. This model is of non-gradient type and its spin values are unbounded so that there arise various interesting problems in the investigation of the hydrodynamic limit for the model.The estimate obtained, though not uniform in the density of the gas as those for many known models are, seems sufficiently accurate for dealing with the problems concerning its hydrodynamic limit. In fact based on our estimate we proved in 2004 that the fluctuations around the hydrodynamic scaling in the equilibrium converge to a process that is characterized as an infinite dimensional Ornstein-Uhlenbeck prosess [cf. Equilibrium fluctuations for zero-range-exclusion processes, Jour.Stat.Phys. (2004)]. We encountered a certain difficulty for proving the tightness of a sequence of the processes of finite size and resolved it by devising a trick by using a time reversed process.
在2003年引入了一个具有两个守恒量的格子气模型,称为零程排斥模型,我们得到了该模型的谱隙的估计[cf.零程排斥动力学的谱隙估计,Osaka Jour.Math. 141(no.4)(2004)]。该模型是非梯度型的,其自旋值是无界的,因此在研究该模型的流体动力学极限时会出现各种有趣的问题,所得到的估计虽然不象许多已知模型那样在气体密度上是均匀的,但对于处理与其流体动力学极限有关的问题似乎是足够精确的。事实上,基于我们的估计,我们在2004年证明了平衡中流体动力学标度周围的波动收敛到一个过程,该过程被表征为无限维的Ornstein-Uhlenbeck过程[cf.零程排斥过程的平衡涨落,《统计物理学杂志》(2004年)]。我们在证明有限大小过程序列的紧性时遇到了一定的困难,通过设计一个技巧,利用时间反演过程解决了这个困难。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heat escape
热量逸出
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Kazuhiro Kurata;M.Maniwa;Kazuhiro Kurata;Minoru Murata
- 通讯作者:Minoru Murata
H.Tanemura, N.Yoshida: "Localization transition of d-friendly walkers"Probab.Th.Rel.Fields.. 125. 593-608 (2003)
H.Tanemura, N.Yoshida:“d 友好步行者的本地化转变”Probab.Th.Rel.Fields.. 125. 593-608 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Uniqueness theorems for parabolic equations and Martin BOUNDARY for elliptic equations in skew producl form
抛物线方程的唯一性定理和斜积形式椭圆方程的 Martin BOUNDARY
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H.Matsuzoe;J.Inoguchi;蔵野 正美;M.MURATA
- 通讯作者:M.MURATA
Uniqueness theorems for parabolic equations and Martin BOUNDARY for elliptic equations in skew product form
抛物线方程的唯一性定理和斜积形式椭圆方程的 Martin BOUNDARY
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Murata
- 通讯作者:M.Murata
Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems
- DOI:10.1063/1.1765215
- 发表时间:2004-02
- 期刊:
- 影响因子:1.3
- 作者:M. Katori;H. Tanemura
- 通讯作者:M. Katori;H. Tanemura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UCHIYAMA Kohei其他文献
UCHIYAMA Kohei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UCHIYAMA Kohei', 18)}}的其他基金
Problems of Hydrodynamic Limits and Related Subjects
水动力极限问题及相关主题
- 批准号:
11440026 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Optimization of Markov Chain Monte Carlo Schemes with Spectral Gap Estimation
具有谱间隙估计的马尔可夫链蒙特卡罗方案优化
- 批准号:
2311307 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
Sharp bound of the spectral gap for particle systems
粒子系统光谱间隙的锐界
- 批准号:
21K03267 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Zeros of Eigenfunctions of Metric Graphs and Their Applications to Spectral Gap Estimates and to Buckling of Structures
度量图本征函数的零点及其在谱间隙估计和结构屈曲中的应用
- 批准号:
1815075 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Rigidity of non-isometric actions of discrete groups and non-linear spectral gap
离散群非等距作用的刚性和非线性谱间隙
- 批准号:
17H02840 - 财政年份:2017
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nonlinear spectral gap with respect to non-positively curved spaces
相对于非正弯曲空间的非线性谱间隙
- 批准号:
15K17538 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




