A new weak approximation scheme of diffusion and its application to Finance

一种新的扩散弱近似方案及其在金融中的应用

基本信息

  • 批准号:
    15540110
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The object of this project is to establish the Kusuoka approximation. Kusuoka approximation is a new scheme that approximate E[f(X(T)] where X(t) denotes a diffusion process and f a function with some regularity. This problem is called weak approximation. By using the Kusuoka approximation, it is expected that we can reduce the number of the dimension of the domain of integration which arises in the last step of the approximation. This integral dimension is a very critical factor if we use quasi-Monte Carlo techniques. In this project, we have achieved the following successes :1. The discovery of a versatile algorithm that enables us to apply the Kusuoka approximation easily to any diffusion processes described by SDEs.2. The algorithm above also is compatible with quasi-Monte Carlo method.3. We have applied the algorithm to financial derivative pricing problem and showed that our new algorithm makes at least 800 times faster calculation than existing methods.
这个项目的目的是建立Kusuoka近似。Kusuoka近似是一种近似E[f(X(T)]的新格式,其中X(T)表示扩散过程,f表示具有一定规律性的函数。这个问题叫做弱近似。通过使用Kusuoka近似,我们期望可以减少在近似的最后一步产生的积分域的维数。如果我们使用拟蒙特卡罗技术,这个积分维数是一个非常关键的因素。在这个项目中,我们取得了以下成功:1。发现了一种通用算法,使我们能够轻松地将Kusuoka近似应用于sdes描述的任何扩散过程。该算法还与拟蒙特卡罗方法兼容。将该算法应用于金融衍生品定价问题,结果表明,新算法的计算速度比现有方法至少快800倍。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A partial Sompling method Applied to the Kusuoka approximation
应用于Kusuoka近似的部分Sompling方法
A new simulation method of diffusion processes applied to Finance
应用于金融的扩散过程新模拟方法
A partical sampling method applied to the Kusuoka approximation
应用于Kusuoka近似的粒子采样方法
T.Fujita, Sh.Ito, S.Ninomiya: "Generalized ramder Corput sequence and its application to Numerical Integration"Monte Carlo Method and its application. (to appear). (2002)
T.Fujita、Sh.Ito、S.Ninomiya:“广义 ramder Corput 序列及其在数值积分中的应用”蒙特卡罗方法及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Syoiti Ninomiya: "A new simulation scheme : Application of the Kusuoka Approximation to Finance problems"Mathematics and Computers in Simulation. (to appear).
Syoiti Ninomiya:“一种新的模拟方案:Kusuoka 近似在金融问题中的应用”模拟中的数学和计算机。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NINOMIYA Syoiti其他文献

NINOMIYA Syoiti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NINOMIYA Syoiti', 18)}}的其他基金

Higher Order weak approximation of Stochastic Differential Equations with application to finance
随机微分方程的高阶弱逼近及其在金融中的应用
  • 批准号:
    22540115
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of new algorithms for numerical weak approximation of Diffusion Processes by Kusuoka scheme and their applications to Finance problems
Kusuoka 方案的扩散过程数值弱逼近新算法的构建及其在金融问题中的应用
  • 批准号:
    18540113
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

A numerical method to solve matrix-valued differential inequalities with applications in dynamical systems
求解矩阵值微分不等式的数值方法及其在动力系统中的应用
  • 批准号:
    2889464
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Studentship
Development of numerical method for bubbly flows inside and outside dense vertical structures
密集垂直结构内外气泡流数值方法的发展
  • 批准号:
    23K03660
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation for microscopic failure mechanism of CFRP and development for multiscale numerical method
CFRP微观失效机理研究及多尺度数值方法开发
  • 批准号:
    23K03588
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A numerical method for stochastic differential equations for interest rate modeling and regulation after the global financial crises of 2007-2008
2007-2008 年全球金融危机后利率建模和监管的随机微分方程数值方法
  • 批准号:
    21K03365
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of numerical method for interaction of flexible structures and bubbly flow
柔性结构与气泡流相互作用数值方法的发展
  • 批准号:
    20K14652
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of numerical method for liquid movement inside of tank and strongly coupling with ship motion and structural response at an actual sea condition
发展实际海况下储罐内液体运动并与船舶运动和结构响应强耦合的数值方法
  • 批准号:
    19K04869
  • 财政年份:
    2019
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a numerical method for analyzing radio-frequency sheaths in arbitrarily oriented magnetic fields
开发用于分析任意方向磁场中射频鞘层的数值方法
  • 批准号:
    19K03793
  • 财政年份:
    2019
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fiber Beads: Development of a numerical method for the synthesis of fiber-reinforced bead patterns
纤维珠:开发用于合成纤维增强珠图案的数值方法
  • 批准号:
    431606085
  • 财政年份:
    2019
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Research Grants
Innovative research for self-validating numerical method of infinite dimensional problems
无限维问题自验证数值方法的创新研究
  • 批准号:
    18K03434
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of Numerical Method of Local Plastic Strain by Nanoscale Marking
纳米标记局部塑性应变数值方法的建立
  • 批准号:
    18K04751
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了