Development of practical methods for rigorous calculation with guaranteed accuracy

开发可保证精度的严格计算的实用方法

基本信息

项目摘要

Our objective in this study which is fonded by Grant-in-Aid for Scientific Research is development of practical methods for rigorous calculation with, guaranteed accuracy. Through the period of this study over 4 years, we have obtained some results on the following.1. Verified computation of the maximum eigenvalue of Newton operators in infinite dimensional spaces2. Verified computation methods for eigenvalues of symmetric band matrices together with their indices3. Extension of the above methods to general eigenvalue problems4. Methods for verification of uniqueness of solutions to fixed point equations5. Research on a bifurcation diagram of Perturbed Gelfand Equation with guaranteed accuracy6. Rigorous calculation of constants appearing in error estimations of FEM7. Research on methods for transaction of rounding errors using Fortran 90 and quadruple-precision floating point numbers8. Numerical verification of solutions to the Navier-Stockes equation using spectral methods9. Estimation methods for influence of rounding error by interval arithmetic10. Estimation of ability of approximation of FEM.Consequently we can conclude that practical methods for verified computation of eigenvalue problems. are developed. On the methods for PDEs, they are also developed but there are some difficulties concerning mathematical matters in practical use for non-professional users.
这项研究由科学研究资助基金资助,我们的目标是开发实用的严格计算方法,保证准确性。通过4年多的研究,我们在以下方面取得了一些成果:1。无限维空间中牛顿算子最大特征值的验证计算2。验证了对称带矩阵特征值及其指标的计算方法。上述方法在一般特征值问题上的推广。不动点方程解唯一性的验证方法[j]。保证精度的摄动Gelfand方程的分岔图研究[j]。对误差估计中出现的常数进行了严格的计算。用Fortran 90和四精度浮点数处理舍入误差的方法研究[j]。用谱法对Navier-Stockes方程解的数值验证[j]。基于区间算术的舍入误差影响估计方法[j]。有限元逼近能力的估计。由此得出了特征值问题验证计算的实用方法。开发。关于偏微分方程的方法,也有发展,但在非专业用户实际使用的数学问题上有一些困难。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yamamoto,N.: "A simple method for error bounds of eigenrilues of symmetric matrices"Linear Algebra and its Applications.
Yamamoto,N.:“对称矩阵特征值误差界的一种简单方法”线性代数及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nakao, M.T.: "On the best constant in the error bound for the H^1_0-projection into piecewise polynomial spaces" Journal of Approximation Theory. 93. 491-500 (1998)
Nakao, M.T.:“关于 H^1_0 投影到分段多项式空间的误差范围中的最佳常数”《近似理论杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kimura, S., Yamamoto, N.: "On explicit bounds in the error for H^1_0-projection into piecewise polynomial spaces"Bulletin of Informatics and Cybernetics. Vol.31,No.2. 109-115 (1999)
Kimura, S., Yamamoto, N.:“关于 H^1_0 投影到分段多项式空间的误差的显式界限”信息学和控制论通报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nakao, M.T., Yamamoto, N., Nagatou, K.: "Numerical verifications of eigenvalues of second-order elliptic operators"Japan Journal of Industrial and Applied Mathematics. Vol.16. 307-320 (1999)
Nakao, M.T.、Yamamoto, N.、Nagatou, K.:“二阶椭圆算子特征值的数值验证”日本工业与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nakao,M.T.,Yamamoto,N.: "A guaranteed bound of the optimal constant in the error estimations for linear triangular element"Computing Supplementurn.
Nakao,M.T.,Yamamoto,N.:“线性三角形单元误差估计中最佳常数的保证界限”计算补充。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAMOTO Nobito其他文献

YAMAMOTO Nobito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAMOTO Nobito', 18)}}的其他基金

Library for Validated Computation of Differential Equations
用于验证微分方程计算的库
  • 批准号:
    24540115
  • 财政年份:
    2012
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Validate Computation Library on Time Evolution Equations
验证时间演化方程的计算库
  • 批准号:
    21540115
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of numerical verification methods on evolution equations
演化方程数值验证方法的发展
  • 批准号:
    19540118
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Verification Methods for Dynamical Systems described by ODEs
常微分方程描述的动力系统数值验证方法
  • 批准号:
    17540106
  • 财政年份:
    2005
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Self-validated computation of singular integral and integral equations
奇异积分和积分方程的自验证计算
  • 批准号:
    15540111
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Analysis by Numerical Verification Methods
数值验证方法的非线性分析
  • 批准号:
    13640105
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of numerical verification method for resolvent
解析溶液数值验证方法的开发
  • 批准号:
    21K03373
  • 财政年份:
    2021
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical verification of solutions for parabolic problems based on the finite element method
基于有限元法的抛物线问题解的数值验证
  • 批准号:
    18K03440
  • 财政年份:
    2018
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical verification method of solutions for evolutionary equations by applying the matrix exponential
应用矩阵指数求解演化方程的数值验证方法
  • 批准号:
    17K17948
  • 财政年份:
    2017
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Parallel Structure-Preserving Algorithms: Theory and Numerical Verification
并行结构保持算法:理论与数值验证
  • 批准号:
    16K17550
  • 财政年份:
    2016
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Advanced research on the Numerical verification Method based on the Finite Element Method
基于有限元法的数值验证方法研究进展
  • 批准号:
    16H03950
  • 财政年份:
    2016
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Expansion of numerical verification methods for functional equations
函数方程数值验证方法的扩展
  • 批准号:
    15H03637
  • 财政年份:
    2015
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study on the numerical verification method of solutions with high accuracy for the nonlinear mathematical models in infinite dimension
无限维非线性数学模型高精度解的数值验证方法研究
  • 批准号:
    15K05012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Verification Method for Solutions of Nonlinear Programming Problems
非线性规划问题解的数值验证方法
  • 批准号:
    26870646
  • 财政年份:
    2014
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on the efficient calculation and numerical verification for the 3-d finite element method
三维有限元法高效计算及数值验证研究
  • 批准号:
    25400198
  • 财政年份:
    2013
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了