Model-Driven Optimization in Software Engineering
软件工程中的模型驱动优化
基本信息
- 批准号:462887453
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A variety of software engineering problems can be considered as optimization problems such as software modularization, software testing, and release planning. In search-based software engineering (SBSE) meta-heuristic methods are applied to solve optimization problems in software engineering. One of the widely used approaches to iteratively explore a search space are evolutionary algorithms. The problem domains in software engineering are typically encoded with vectors or trees since evolutionary operators can be specified straightforwardly. When the quality of optimization results is not as high as expected, an explanation for this effect may be that domain-specific knowledge is not captured enough in the explorative search. Model-driven engineering (MDE) offers concepts, methods and techniques to process domain-specific models uniformly. The use of MDE in SBSE is called model-driven optimization (MDO); it has been demonstrated at well-known optimization problems in the literature. MDO is promising as domain-specific knowledge can be systematically incorporated into SBSE. To strengthen the MDO vision, this project aims to consolidate MDO, i.e., to develop a scientific basis for the results obtained so far and to obtain a deeper understanding when and how MDO shall be used to solve optimization problems in software engineering. This project vision can be broken down into the following objectives: (1) Develop a formal framework for MDO that defines a uniform approach for specifying optimization problems and evolutionary algorithms using domain-specific knowledge. The framework will be used for clarifying concepts and for reasoning about the quality of evolutionary algorithms in MDO such that developers can make informed decisions. (2) Perform an empirical evaluation of MDO to investigate its practical relevance. Two topical subject fields of SBSE have been identified for this evaluation, namely mutation testing and genetic improvement of programs. As a prerequisite for this evaluation, an integrated tool environment for MDO will be developed taking all concepts and results of the formal framework into account that are practically relevant.
各种软件工程问题都可以被视为优化问题,例如软件模块化、软件测试和发布计划。在基于搜索的软件工程(SBSE)中,元启发式方法被应用于解决软件工程中的优化问题。迭代探索搜索空间的广泛使用的方法之一是进化算法。软件工程中的问题域通常用向量或树进行编码,因为可以直接指定进化算子。当优化结果的质量不如预期时,对此效果的解释可能是在探索性搜索中没有充分捕获特定领域的知识。模型驱动工程(MDE)提供了统一处理特定领域模型的概念、方法和技术。在SBSE中使用MDE称为模型驱动优化(MDO);它已在文献中的著名优化问题中得到证明。 MDO 前景广阔,因为特定领域的知识可以系统地融入 SBSE 中。为了强化 MDO 愿景,该项目旨在巩固 MDO,即为迄今为止所取得的成果奠定科学基础,并更深入地了解何时以及如何使用 MDO 来解决软件工程中的优化问题。该项目愿景可分为以下目标: (1) 开发 MDO 的正式框架,定义使用特定领域知识指定优化问题和进化算法的统一方法。该框架将用于澄清概念并推理 MDO 中进化算法的质量,以便开发人员能够做出明智的决策。 (2)对MDO进行实证评估,探讨其实际意义。此次评估确定了 SBSE 的两个主题领域,即突变测试和程序遗传改良。作为本次评估的先决条件,将开发一个多域作战的集成工具环境,同时考虑到正式框架中实际相关的所有概念和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Gabriele Taentzer其他文献
Professorin Dr. Gabriele Taentzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Gabriele Taentzer', 18)}}的其他基金
Distributed model-driven software development
分布式模型驱动软件开发
- 批准号:
242758491 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Systematische Entwicklung komplexer Software in verteilten Teams
分布式团队中复杂软件的系统开发
- 批准号:
52588763 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331153 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331152 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
- 批准号:
2119677 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
- 批准号:
2118737 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Multifidelity Nonsmooth Optimization and Data-Driven Model Reduction for Robust Stabilization of Large-Scale Linear Dynamical Systems
用于大规模线性动力系统鲁棒稳定的多保真非光滑优化和数据驱动模型简化
- 批准号:
2012250 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Pipeline Operations Optimization using Data-Driven Model
使用数据驱动模型优化管道运营
- 批准号:
543444-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Engage Grants Program
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1953049 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1839707 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1839804 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Model-driven Media and Process Optimization in Mammalian Cell Lines
哺乳动物细胞系中模型驱动的培养基和过程优化
- 批准号:
7938176 - 财政年份:2009
- 资助金额:
-- - 项目类别: