Vanishing Theorems in Hyperasymptotic Analysis and their Applications

超渐近分析中的消失定理及其应用

基本信息

  • 批准号:
    15540158
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

The vanishing theorem of commutative case in asymptotic analysis means by Cech cohomology that, if asymptotically flat functions are given on the intersections of a good covering of sectors at the infinity in the extended complex plane, then the functions are written in the form of difference of 2 asymptotically developable functions associated the covering. This theorem can be reformed to the case where the functions are with precise estimates. For example, we, Adri B. Olde Daalhuis and the author, can extend to the case of hyperasymptotics of level 1 and 2.It is applied to study the structure of formal solutions to inhomogenous linear differential equations by using solutions asymptotic to the series 0 of the associated homogeneous linear differential equations : inhomogeneous equations associated with the Bessel equation, for example, the Anger function, etc..Related to the study on the Scorrer function, the author established a method of calculating formal solutions of the Airy equation.In the course of the study, the author invited Prof. Werner Balser, specialist of asymptotic analysis, and Prof. Reinhart Schaefke, who were working on asymptotic analysis of several variables, and we, Schaefke and the author, discussed on the extension of vanishing theorems in asymptotic analysis in several variable with a condition which the author had not supposed in his Lecture note in Math 1075, Springer verlag.The author and Obayashi succeeded in calculateing solutions, asymptotic expansions and Stokes multipliers near the singularities of system of partial differential equations of 2 variables, analogous to the Bessel equation or the Kummer equation.
渐近分析中对易情形的消失定理用切赫上同调的方法得到:如果在扩张复平面上无穷远的扇区的交点上给出渐近平坦函数,则该函数以与该覆盖相关的两个渐近可展函数的差的形式表示。这一定理可以改进为函数具有精确估计的情况。例如,我们,Adri B.Olde Daalhuis和作者,可以推广到水平1和2的超渐近性的情况。它被用来研究非齐次线性微分方程列0的渐近解的结构:与Bessel方程有关的非齐次方程,例如,愤怒函数等。在研究Scorrer函数的过程中,作者建立了计算Aary方程的形式解的方法。在研究过程中,作者邀请了渐近分析专家Werner Balser教授和Reinhart Schaefke教授,Schaefke和作者讨论了多元渐近分析中渐近定理的推广,并讨论了作者在《数学1075,Springer Verlages》的讲稿中没有假设的条件下多元渐近分析中的零点定理的推广。作者和大林成功地计算了二元偏微分方程组的奇点附近的解、渐近展开式和Stokes乘子,类似于Bessel方程或Kummer方程。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Study on the Airy Differential Equation
艾里微分方程的研究
Vanishing Theorems in Hyperasymptotic Analysis and Applications to Inhomogeneous Linear Differential Equations
超渐近分析中的消失定理及其在非齐次线性微分方程中的应用
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    MAJIMA;Hideyuki
  • 通讯作者:
    Hideyuki
MAJIMA, Hideyuki: "Vanishing Theorems in Hyperasymptotic Analysis and Applications to Inhomogeneous Linear Differential Equations"RIMS Kokyuroku. (to appear in)(未定). (2004)
MAJIMA,Hideyuki:“超渐近分析中的消失定理及其在非齐次线性微分方程中的应用”RIMS Kokyuroku(待定)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Asymptotic Analysis of Confluent Hypergeometric Partial Differential Equations in Many Variables
多变量合流超几何偏微分方程的渐近分析
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    MAJIMA;Hideyuki
  • 通讯作者:
    Hideyuki
Asymptotic Analysis of the Confluent Hypergeometric Partial Differential Equations Satisfied by Φ_2, I
满足Φ_2、I的汇合超几何偏微分方程的渐近分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MAJIMA Hideyuki其他文献

Keller-Segel 方程式の数値解析
Keller-Segel 方程的数值分析
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    MAJIMA Hideyuki;Seki Takakazu;亀子正喜;真島秀行;齊藤宣一
  • 通讯作者:
    齊藤宣一
Seki Takakazu, his life and bibliography
关孝一,他的生平和参考书目
his life and bibliography
他的生平和参考书目

MAJIMA Hideyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MAJIMA Hideyuki', 18)}}的其他基金

Study on the mathematics which TAKEBE brothers learned from SEKI Takakazu and the development
TAKEBE兄弟向SEKI Takakazu学习的数学及其发展研究
  • 批准号:
    23540126
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Roles of Mitochondrial Reactive Oxygen Spesies in Suppression of Apoptosis Induced by X-irradiation
线粒体活性氧物种在抑制X射线诱导的细胞凋亡中的作用
  • 批准号:
    22592093
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on books and manuscripts left by Nishida Akinori from the point of view of mathematical history
从数学史的角度看西田昭教留下的著作和手稿
  • 批准号:
    19540117
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanism of Generation of Reactive Oxygen Species from Mitochondria by Nuclear Signal
核信号从线粒体产生活性氧的机制
  • 批准号:
    16390541
  • 财政年份:
    2004
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Radiation Sensitivity and Mitochondrial Related Responding Genes.
辐射敏感性和线粒体相关响应基因。
  • 批准号:
    14207078
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Changeinradiation sensitivityby mitochondrial damageand their mechanisms
线粒体损伤引起的辐射敏感性变化及其机制
  • 批准号:
    12671844
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of Mitochondrial Cell Death Induced by Radiation
辐射诱导线粒体细胞死亡的机制
  • 批准号:
    10671786
  • 财政年份:
    1998
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STUDIES ON D-MODULES DERIVED FROM CONFLUENT HYPERGEOMETRIC DIFFERENTIAL EQUATIONS
合流超几何微分方程导出的D模研究
  • 批准号:
    09440052
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了