Research on Functional Analysis and Mathematical theory of Feynman path integrals.
费曼路径积分泛函分析与数学理论研究。
基本信息
- 批准号:15540184
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Fujiwara tried to give mathematically rigorous treatment of Feynman path integrals. He proved an improved remainder estimate of stationary phase method for oscillatory integrals over a space of large dimension. And he make the discussion of Kumano-go's results on convergence of Feynman path integrals. He also proved a new formula for the second term of the semi-classical asymptotics of Feynman path integrals.2. Yajima got results on spectrum and scattering properties of Nelson model, which is a simplified model of non-relativistic QED. He also succeeded in proving that every solution of Schrodinger equation with potentials which grow of oder O(|x|^m), m > 2 at the infinity gains, at almost every t, differentiability of order 1/m compared with its initial value.3. Watanabe made research on solutions of PDE with dispersive type. In the joint with T. Suzuki and T. Kobayashi he also proved interface regularity of solutions to the system of Maxwell-Stokes equations. He also discussed.4. Shimomura discussed large time behaviour of solutions to non-linear Schrodinger equations. He succeeded in finding a quite a fine property of solutions which is not foreseen from mere growth order of nonlinear term. Shimomura also proved smoothing effects of time local solution to non-linear Schrodinger equation with electro-magnetic potential.
1. 藤原试图给出费曼路径积分的严格数学处理方法。他证明了大尺度空间上振荡积分的一种改进的定相法剩余估计。并对熊野吾关于费曼路径积分收敛性的结论进行了讨论。他还证明了费曼路径积分的半经典渐近第二项的一个新公式。Yajima得到了非相对论性QED的简化模型Nelson模型的光谱和散射特性的结果。他还成功地证明了薛定谔方程的每一个解,其势能增长为O阶(|x|^m),在无穷远处,几乎在每一个t处,与初始值相比,可微性都是1阶/m。Watanabe对分散型PDE溶液进行了研究。他还与铃木和小林共同证明了麦克斯韦-斯托克斯方程组解的界面正则性。他还讨论了……Shimomura讨论了非线性薛定谔方程解的大时间行为。他成功地发现了解的一个很好的性质,这是仅仅从非线性项的增长顺序无法预见的。Shimomura还证明了具有电磁势的非线性薛定谔方程的时间局部解的平滑效应。
项目成果
期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modified wave operators for the coupled wave-Schrödinger equations in three space dimensions
- DOI:10.3934/dcds.2003.9.1571
- 发表时间:2003-09
- 期刊:
- 影响因子:1.1
- 作者:A. Shimomura
- 通讯作者:A. Shimomura
Nonexistence of asymptotically free solutions for quadratic nonlinear Schrodinger equations in two space dimensions
二维空间二次非线性薛定谔方程不存在渐近自由解
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Shimomura;A.
- 通讯作者:A.
Scattering theory for Zakharov equations in three space dimensions with large data,
大数据空间三维扎哈罗夫方程的散射理论,
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Shimomura;A.
- 通讯作者:A.
MODIFIED WAVE OPERATORS FOR NONLINEAR SCHR¨ ODINGER EQUATIONS IN ONE AND TWO DIMENSIONS
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:N. Hayashi;P. Naumkin;A. Shimomura;S. Tonegawa
- 通讯作者:N. Hayashi;P. Naumkin;A. Shimomura;S. Tonegawa
Wave operators for the coupled Klein-Gordon-Schrodinger equations in two space dimensions
- DOI:10.1619/fesi.47.63
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:A. Shimomura
- 通讯作者:A. Shimomura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIWARA Daisuke其他文献
FUJIWARA Daisuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIWARA Daisuke', 18)}}的其他基金
Research in Functional Analsys and Mathematical theory of Feynman path integrals
费曼路径积分泛函分析与数学理论研究
- 批准号:
13640189 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in Functional Analsys and Mathematical theory of Feynman path integrals.
费曼路径积分的泛函分析和数学理论研究。
- 批准号:
11640180 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in Functional Analsys.
泛函分析研究。
- 批准号:
09440068 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
- 批准号:
2238818 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振荡积分
- 批准号:
2200470 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
CAREER: Oscillatory Integrals and Applications
职业:振荡积分和应用
- 批准号:
2143989 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Exact WKB analysis for differential equations satisfied by oscillatory integrals
振荡积分满足的微分方程的精确 WKB 分析
- 批准号:
21K03300 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2055544 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Restriction Estimates and General Oscillatory Integrals
限制估计和一般振荡积分
- 批准号:
2207281 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2141426 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Computing Highly Oscillatory Integrals
计算高振荡积分
- 批准号:
565314-2021 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
University Undergraduate Student Research Awards
Numerical Integration of Oscillatory Integrals and Application
振荡积分的数值积分及应用
- 批准号:
554756-2020 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
University Undergraduate Student Research Awards