On an analysis globally in time of solutions for surface waves
面波解的全局及时分析
基本信息
- 批准号:15540200
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The KdV equation and the Kawahara equation were derived formally from the basic equations for surface waves as long wave approximations. After rewriting the equations in an appropriate non-dimensional form, we have two non-dimensional parameters δ and ε the ratio of the water depth to the wave length and the ratio of the amplitude of the free surface to the water depth, respectively. The limit δ→0 corresponds to the long wave approximation. More precisely, the limit δ=ε^2→0 corresponds to the KdV limit and the limit δ=ε^4→0 corresponds to the Kawahara limit. T.Iguchi gave mathematically rigorous justifications for the KdV and the Kawahara limits and proved that the solutions of these approximate equations in fact approximate the solutions of the original basic equations for an appropriate long time interval. He also analyzed an effect of the presence of an uneven bottom to these long wave approximations.T.Miyakawa investigated the Navier-Stokes equations for a two-dimensional incompres … More sible viscous fluid in the cases where the fluid is occupied the entire space or outside of the unit disc. He discovered the relation between the group symmetries of the solution and the space-time decay properties of the solution. He also investigated the Euler equation for a two-dimensional incompressible ideal fluid occupied an exterior domain and discovered a relation between the square integrability of the pressure and the effect of the flow to the obstacle.S.Nishibata investigated the asymptotic behavior in time of the spherically symmetric solution for compressible Navier-Stokes equations in the exterior domain of the sphere. He proved that a stationary solution is asymptotically stable under suitable assumptions for the initial data and the external forces. He did not suppose any smallness conditions for the data.Y.Kagei investigated the asymptotic stability of a stationary solution for the compressible Navier-Stokes equations in the half-space. He discovered a nice solution formula to the linearized problem. By using the formula and carrying out the analysis very carefully for the oscillatory integrals, he obtained the best possible decay estimates and proved the asymptotic stability. Less
从表面波的基本方程出发,导出了长波近似的KdV方程和Kawahara方程。将方程改写成适当的无量纲形式后,得到两个无量纲参数δ和ε,分别为水深与波长的比值和自由表面振幅与水深的比值。极限δ→0对应于长波近似。更准确地说,极限δ=ε^2→0对应于KdV极限,极限δ=ε^4→0对应于川原极限。T.Iguchi对KdV和Kawahara极限给出了数学上严格的证明,并证明了这些近似方程的解实际上在适当的长时间间隔内近似于原始基本方程的解。他还分析了不均匀底部的存在对这些长波近似的影响。T.Miyakawa研究了二维非压缩的Navier-Stokes方程。 ...更多信息 在流体占据单元盘的整个空间或外部的情况下,他发现之间的关系组对称性的解决方案和时空衰变性质的解决方案。他还研究了欧拉方程的二维不可压缩的理想流体占据了外部领域,并发现了一个关系的平方积分的压力和影响的流动的障碍。S.西巴塔调查的渐近行为在时间的球对称解决方案可压缩的Navier-Stokes方程的外部领域的领域。他证明了一个固定的解决方案是渐近稳定的适当假设下的初始数据和外力。他没有假设任何小条件的数据。Y.Kagei调查的渐近稳定性的固定解决方案的可压缩Navier-Stokes方程的半空间。他发现了线性化问题的一个很好的求解公式。通过使用公式和进行分析非常仔细的振荡积分,他获得了最好的可能衰减估计,并证明了渐近稳定。少
项目成果
期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lp ENERGY METHOD FOR MULTI-DIMENSIONAL VISCOUS CONSERVATION LAWS AND APPLICATION TO THE STABILITY OF PLANAR WAVES
- DOI:10.1142/s0219891604000196
- 发表时间:2004-09
- 期刊:
- 影响因子:0.7
- 作者:S. Kawashima;S. Nishibata;Masataka Nishikawa
- 通讯作者:S. Kawashima;S. Nishibata;Masataka Nishikawa
On L1-summability and asymptotic profiles for smooth solutions to Navier–Stokes equations in a 3D exterior domain
- DOI:10.1007/s00209-003-0551-x
- 发表时间:2003-08
- 期刊:
- 影响因子:0.8
- 作者:Cheng He;Tetsuro Miyakawa
- 通讯作者:Cheng He;Tetsuro Miyakawa
Yoshiyuki Kagei, M.Ruzicka, G.Thaeter: "A limit problem in natural convection"Nonlinear Differential Equations and Applications. (発表予定).
Yoshiyuki Kagei、M.Ruzicka、G.Thaeter:“自然对流中的极限问题”非线性微分方程和应用(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tatsuo Iguchi, P.LeFloch: "Existence theory for hyperbolic systems of conservation laws with general flux-functions"Archive for Rational Mechanics and Analysis. 168, no.3. 165-244 (2003)
Tatsuo Iguchi,P.LeFloch:“具有一般通量函数的守恒定律双曲系统的存在理论”理性力学与分析档案。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tatsuo Iguchi: "On steady surface waves over a periodic bottom : relations between the pattern of imperfect bifurcation and the shape of the bottom"Wave Motion. 37, no.3. 219-239 (2003)
Tatsuo Iguchi:“在周期性底部的稳定表面波上:不完美分叉模式与底部形状之间的关系”波动。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IGUCHI Tatsuo其他文献
IGUCHI Tatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IGUCHI Tatsuo', 18)}}的其他基金
Creation of a new model for water waves and its mathematical analysis
新水波模型的创建及其数学分析
- 批准号:
17K18742 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Asymptotic analysis of water waves over a periodically oscillating bottom
周期性振荡底部水波的渐近分析
- 批准号:
24340030 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis of shallow water approximations for water waves
水波浅水近似的数学分析
- 批准号:
21540226 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of long wave approximations for water waves
水波长波近似的数学分析
- 批准号:
18540207 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Solvability and properties of solutions of the Cauchy problem of equations related to the KdV equation
与 KdV 方程相关的方程柯西问题解的可解性和性质
- 批准号:
18740068 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Applications of stochastic calculus to the KdV equation and hierarchy
随机微积分在 KdV 方程和层次结构中的应用
- 批准号:
18340038 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




