Heisenberg spin glasses with a strong random anisotropy
具有强随机各向异性的海森堡自旋玻璃
基本信息
- 批准号:15540357
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied the phase transition of the ±J Heisenberg model in three dimensions. Using the exchange Monte Cairo method, we have investigated the spin-overlap distribution near the SG transition temperature. By selecting the order parameter as the maximum value of the spin overlap of the diagonal componentsunder the uniform rotations, the calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking which is similar to the one found in the chirality-overlap distribution by Hukushima and Kawamura. This result may explain absence of any crossing of the Binder parameter of the spin at a finite SG transition temperature.We have also studied the ground state and low-lying excitations of the ±J Heisenberg model on a three dimensional L×L×L (L≦11) lattice. We found evidence of occurrence of a Parisi state. That is, there exists a metastable state with a finite energy of ΔE〜O(J) in the thermodynamic limit and the energy barrier ΔW between the metastable state and the ground state is ΔW∝JL^θ with θ〜0.53. We also found that the energy ΔE of small scale excitations are related to a scale of the excitation V in a similar manner to those of the ferromagnetic model, i. e., ΔE∝J L^ΦV^Ψ with Φ〜-4.7 and Ψ〜2.0. This fact suggests that similarity exists in the ground state structure between the ±J and the ferromagnetic Heisenberg models, though the spin directions of those two models differ greatly from one another.
我们研究了±J 海森堡模型在三个维度上的相变。使用交换蒙特开罗方法,我们研究了 SG 转变温度附近的自旋重叠分布。通过选择有序参数作为均匀旋转下对角分量自旋重叠的最大值,计算出的重叠分布表明出现了一种特殊类型的复制对称破缺,这与 Hukushima 和 Kawamura 在手性重叠分布中发现的类似。这个结果可以解释在有限的SG转变温度下自旋Binder参数不存在任何交叉。我们还研究了三维L×L×L(L≤11)晶格上±J海森堡模型的基态和低位激发。我们发现了帕里西状态发生的证据。即在热力学极限内存在有限能量ΔE〜O(J)的亚稳态,亚稳态与基态之间的能垒ΔW为ΔW∝JL^θ,θ〜0.53。我们还发现,小尺度激励的能量 ΔE 与激励 V 的尺度相关,其方式与铁磁模型类似,即。即,ΔE∝J L^ΦV^Ψ 与 Φ〜-4.7 和 Ψ〜2.0。这一事实表明,±J 模型和铁磁海森堡模型之间的基态结构存在相似性,尽管这两个模型的自旋方向彼此差异很大。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monte Carlo Simulation of the ±J Heisenberg Model in Parisi States
巴黎州 ±J 海森堡模型的蒙特卡罗模拟
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Igarashi;T.Kodaira;T.Shimizu;A.Goto;K.Hashi;T.Shirakura;F.Matsubara
- 通讯作者:F.Matsubara
Ground state and low-lying excitations in a Heisenberg spin-glass model in three dimensions
三维海森堡自旋玻璃模型中的基态和低位激发
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Igarashi;T.Kodaira;T.Shimizu;A.Goto;K.Hashi;T.Shirakura;F.Matsubara;T.Shirakura et al.;F.Matsubara et al.;T.Shirakura;F.Matsubara;F.Matsubara;F.Matsubara
- 通讯作者:F.Matsubara
A peculiar behavior of the overlap distribution in a Heisenberg Spin Glass model in three dimensions
三维海森堡旋转玻璃模型中重叠分布的特殊行为
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Igarashi;T.Kodaira;T.Shimizu;A.Goto;K.Hashi;T.Shirakura
- 通讯作者:T.Shirakura
Parisi States in a Heisenberg Spin-Glass Model in Three Dimensions
三维海森堡旋转玻璃模型中的帕里西态
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Igarashi;T.Kodaira;T.Shimizu;A.Goto;K.Hashi;T.Shirakura;F.Matsubara;T.Shirakura et al.;F.Matsubara et al.;T.Shirakura;F.Matsubara;F.Matsubara
- 通讯作者:F.Matsubara
Binder parameter of a Heisenberg spin-glass model in four dimensions
四维海森堡自旋玻璃模型的粘结剂参数
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:M.Igarashi;T.Kodaira;T.Shimizu;A.Goto;K.Hashi;T.Shirakura;F.Matsubara;T.Shirakura et al.;F.Matsubara et al.;T.Shirakura;F.Matsubara;F.Matsubara;F.Matsubara;F.Matsubara et al.;T.Shirakura
- 通讯作者:T.Shirakura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIRAKURA Takayuki其他文献
SHIRAKURA Takayuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
MCSIMus: Monte Carlo Simulation with Inline Multiphysics
MCSIMus:使用内联多物理场进行蒙特卡罗仿真
- 批准号:
EP/W037165/1 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Fellowship
Efficiently Reusing Monte Carlo Simulation Output in Repeated Experiments for Financial and Actuarial Applications
在金融和精算应用的重复实验中有效地重用蒙特卡洛模拟输出
- 批准号:
RGPIN-2018-03755 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
A verification of One-dimensional degenerate model in Monte-Carlo simulation of SRAM
SRAM蒙特卡罗模拟中一维简并模型的验证
- 批准号:
22K11963 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved optical Monte Carlo simulation through standardization, robustness, and training
通过标准化、鲁棒性和训练改进光学蒙特卡罗模拟
- 批准号:
10584410 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Efficiently Reusing Monte Carlo Simulation Output in Repeated Experiments for Financial and Actuarial Applications
在金融和精算应用的重复实验中有效地重用蒙特卡洛模拟输出
- 批准号:
RGPIN-2018-03755 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
Development of the next-generation GPU-based Monte Carlo simulation platform for radiation-induced DNA damage calculations
开发下一代基于 GPU 的蒙特卡罗模拟平台,用于辐射引起的 DNA 损伤计算
- 批准号:
10203527 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Efficiently Reusing Monte Carlo Simulation Output in Repeated Experiments for Financial and Actuarial Applications
在金融和精算应用的重复实验中有效地重用蒙特卡洛模拟输出
- 批准号:
RGPIN-2018-03755 - 财政年份:2020
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
Aggregation of collapsed copolymer chains consisting of flexible and semi-flexible segments: A flat histogram Monte Carlo simulation
由柔性和半柔性链段组成的塌陷共聚物链的聚集:平坦直方图蒙特卡罗模拟
- 批准号:
409634187 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Research Grants
Accurate Monte Carlo simulation of megavoltage beams coupled to external magnetic fields
与外部磁场耦合的兆压束的精确蒙特卡罗模拟
- 批准号:
RGPIN-2015-04178 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
New optical Monte Carlo simulation tools for nuclear medicine
用于核医学的新型光学蒙特卡罗模拟工具
- 批准号:
10307574 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别: