Strong disorder effects on spin and fermion systems in random magnetic fileds
随机磁场中对自旋和费米子系统的强无序效应
基本信息
- 批准号:15540359
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General Aims :In order to study strong disorder effects, we apply techniques which has been developed in the gauge glass model to spin and/or fern-don systems.Achievements :1 We study random hopping fermions on bipartite lattices, especially paying attention to strong diorder features of the model. We show that the states at the band center, which have been believed to be extended, are localized.2 We study the disordered double-exchange model. Anomalous spin-wave spectrum which has been observed in various experiments have been attracting much current interest. We show that this anomalous behavior in the spin-wave can be understood by impurities in electron systems.At the same tame, we work on renomalization group approach to a nonlinear diffusion equations. The motibation for this work lies in the study of the random hopping fermion models mentioned in 1. We show that the exact renormalization group is especially useful to Cauchy problems for wider class of nonlinear diffusion equations.We also explore an efficient method of computing Hall conductances in quantum Hall effects.
总体目标:为了研究强无序效应,我们将规范玻璃模型中发展起来的技术应用到自旋和/或fern-don系统中,主要成果如下:1研究了二分格点上的随机跳跃费米子,特别关注了模型的强二序特征。我们表明,在带中心的状态,这一直被认为是扩展的,是本地化的。2我们研究的无序双交换模型。反常自旋波谱在各种实验中被观测到,引起了人们极大的兴趣。我们证明了自旋波中的这种反常行为可以用电子系统中的杂质来理解。同时,我们研究了非线性扩散方程的重整化群方法。本工作的动机在于研究文献[1]中提到的随机跳跃费米子模型。我们证明了精确重整化群对于更广泛的一类非线性扩散方程的Cauchy问题是特别有用的.我们还探索了计算量子霍尔效应中霍尔电导的一种有效方法.
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Finite Temperature Drude Weight of the Anisotropic Heisenberg Chain
- DOI:10.1143/jpsjs.74s.181
- 发表时间:2005-02
- 期刊:
- 影响因子:1.7
- 作者:J. Benz;T. Fukui;A. Klümper;C. Scheeren
- 通讯作者:J. Benz;T. Fukui;A. Klümper;C. Scheeren
Random hopping fermions on bipartite lattices : Density of states, inverse participation ratios, and their correlations in a strong disorder regime
二分晶格上的随机跳跃费米子:状态密度、逆参与比及其在强无序状态中的相关性
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:H.Yamada;T.Fukui
- 通讯作者:T.Fukui
Chern numbers in a discritized Brillouin zone : Efficient method of computing (spin) Hall conductances
离散布里渊区中的陈数:计算(自旋)霍尔电导的有效方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Fukui;Y.Hatsugai;H.Suzuki
- 通讯作者:H.Suzuki
H.Yamada, T.Fukui: "Random hopping fermions on bipartite lattices : Density of states, inverse participation ratios, and their correlations"Nuclear Physics. B679. 632-646 (2004)
H.Yamada、T.Fukui:“二分晶格上的随机跳跃费米子:态密度、逆参与比及其相关性”核物理。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Spin wave spectrum of a disordered double-exchange model
无序双交换模型的自旋波谱
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Takeo Yamamoto;Takeshi Sugashima;Tota Nakamura;T.Fukui
- 通讯作者:T.Fukui
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUKUI Takahiro其他文献
FUKUI Takahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUKUI Takahiro', 18)}}的其他基金
Microscopic study of quantum spin Hall effect : Time-reversal symmetry and topological invariants
量子自旋霍尔效应的微观研究:时间反转对称性和拓扑不变量
- 批准号:
21540378 - 财政年份:2009
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Method of computing Hall conductivities on discrete Brillouin zone-topological quantum numbers on lattices-
计算离散布里渊区霍尔电导率的方法-晶格上的拓扑量子数-
- 批准号:
18540365 - 财政年份:2006
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Studying Critical phenomena at the Jamming Transition through the Renormalization Group
通过重正化群研究干扰转变中的关键现象
- 批准号:
502548-2017 - 财政年份:2019
- 资助金额:
$ 0.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Studying Critical phenomena at the Jamming Transition through the Renormalization Group
通过重正化群研究干扰转变中的关键现象
- 批准号:
502548-2017 - 财政年份:2018
- 资助金额:
$ 0.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Studying Critical phenomena at the Jamming Transition through the Renormalization Group
通过重正化群研究干扰转变中的关键现象
- 批准号:
502548-2017 - 财政年份:2017
- 资助金额:
$ 0.77万 - 项目类别:
Postgraduate Scholarships - Doctoral
Conformal invariance and the renormalization group in some critical systems
一些关键系统中的共形不变性和重整化群
- 批准号:
1500850 - 财政年份:2015
- 资助金额:
$ 0.77万 - 项目类别:
Continuing Grant
Extending the Ab-initio Nuclear Many-Body Frontier with the Renormalization Group
用重正化群扩展从头算核多体前沿
- 批准号:
1068648 - 财政年份:2011
- 资助金额:
$ 0.77万 - 项目类别:
Continuing Grant
The renormalization group and finite range decompositions of gaussians processes
高斯过程的重正化群和有限范围分解
- 批准号:
392911-2010 - 财政年份:2011
- 资助金额:
$ 0.77万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The renormalization group and finite range decompositions of gaussians processes
高斯过程的重正化群和有限范围分解
- 批准号:
392911-2010 - 财政年份:2010
- 资助金额:
$ 0.77万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The renormalization group approach to coexistence dynamics on complex networks with randomness
具有随机性的复杂网络上共存动态的重整化群方法
- 批准号:
20540382 - 财政年份:2008
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wide applications of the renormalization group
重整化群的广泛应用
- 批准号:
14340077 - 财政年份:2002
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
U.S.-Mexico Workshop: The Renormalization Group at the Turn of the Millennium; January 10-15, 1999, Taxco, Mexico
美国-墨西哥研讨会:世纪之交的重新正常化集团;
- 批准号:
9813918 - 财政年份:1998
- 资助金额:
$ 0.77万 - 项目类别:
Standard Grant