Study of complex systems with catastrophes based on Tsallis' nonextensive statistical mechanics

基于Tsallis非广延统计力学的复杂灾难系统研究

基本信息

  • 批准号:
    15540360
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

As an example of complex systems with catastrophes, we have studied the Internet. We have performed the Ping experiment and analyzed the time series data of the round-trip times of the Ping signals. We have discovered that there are striking common features of the Internet time series with seismic time series. In particular, we have identified the Gutenberg-Richetr law and the Omori law for the Internet time series. Next, we proceeded to investigate the seismic time series data taken in California and Japan. We have found that both the spatial distance and the time interval between two successive earthquakes follow Tsallis statistics. We have also studied the Omori regime relevant to aftershocks, and have discovered that there exist a definite aging phenomenon, which obeys a scaling law. This result suggests that the mechanism governing aftershocks can be thought of as a kind of glassy dynamics.After these studies on earthquakes, we have introduced the concept of earthquake network, wh … More ich is a evorvrng-random-network mapping of the seismic time series. We have found that the network is of the small-world type and is scale free. Also, we have investigated the directed-network feature of the seismic time series and seen that the period distribution is also scale free.In addition to these phenomenological studies, we have also developed fundamental theoretical studies on nonextensive statistical mechanics. Firstly, we have shown how the q-expectation value formalism is consistent with the minimum relative entropy principle associated with the maximum Tsallis entropy principle. Secondly, we have discussed thermodynamics ofa nonextensive system with a long-range interaction. We have shown that the thermodynamic scaling relation conjectured by numerical model analysis can affirmatively proved based on the generalized Euler relation. Thirdly, we have considered the phenomenon of anomalous diffusion in view of Einstein's 1905 theory of Brownian motion and have shown how naturally the fractional Fokker-Planck equation can be derived by relaxing the existence of the second moment in Einstein's theory. Less
我们研究了互联网,作为具有灾难性的复杂系统的一个例子。我们进行了Ping实验,分析了Ping信号往返时间的时间序列数据。我们发现互联网时间序列与地震时间序列有显著的共同特征。特别是,我们已经确定了互联网时间序列的古腾堡-里切特定律和大森定律。接下来,我们对加利福尼亚和日本的地震时间序列数据进行了研究。我们发现两次连续地震之间的空间距离和时间间隔都遵循Tsallis统计。我们还研究了与余震有关的大森状态,发现存在一定的老化现象,并遵循标度规律。这一结果表明,控制余震的机制可以被认为是一种玻璃动力学。在对地震进行了这些研究之后,我们引入了地震台网的概念,它更丰富的是地震时间序列的演化-随机-网络映射。我们发现这个网络是小世界型的,是无标度的。此外,我们还研究了地震时间序列的定向网络特征,发现周期分布也是无标度的。除了这些现象学研究之外,我们还开展了非扩展统计力学的基础理论研究。首先,我们展示了q期望值的形式是如何与最小相对熵原理和最大Tsallis熵原理相一致的。其次,我们讨论了具有长程相互作用的非扩展系统的热力学。在广义欧拉关系的基础上,证明了数值模型分析所推测的热力学标度关系是可以肯定地证明的。第三,我们从爱因斯坦1905年的布朗运动理论出发,考虑了反常扩散现象,并证明了通过放宽爱因斯坦理论中第二矩的存在,分数式福克-普朗克方程是如何自然地推导出来的。少

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Origin of the usefulness of the natural-time representation of complex time series
  • DOI:
    10.1103/physrevlett.94.170601
  • 发表时间:
    2005-05-06
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Abe, S;Sarlis, NV;Varotsos, PA
  • 通讯作者:
    Varotsos, PA
S.Abe, N.Suzuki: "Omori's law in the Internet traffic"Europhysics Letters. 61. 852-855 (2003)
S.Abe、N.Suzuki:“互联网流量中的大森定律”欧洲物理学快报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Scale-invariant statistics of period in directed earthquake network
  • DOI:
    10.1140/epjb/e2005-00106-7
  • 发表时间:
    2005-03-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Abe, S;Suzuki, N
  • 通讯作者:
    Suzuki, N
Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion
Necessity of q-expectation value in nonextenesive statistical mechanics
非广延统计力学中q期望值的必要性
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Abe;G.B.Bagci
  • 通讯作者:
    G.B.Bagci
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ABE Sumiyoshi其他文献

ABE Sumiyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ABE Sumiyoshi', 18)}}的其他基金

Formulation of variational principle for fractional kinetics and its applications
分数阶动力学变分原理的表述及其应用
  • 批准号:
    26400391
  • 财政年份:
    2014
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an Operational Approach to Quantum Thermodynamics
量子热力学操作方法的发展
  • 批准号:
    23540448
  • 财政年份:
    2011
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formulation of the thermodynamic formalism for superstatistics and systematic derivations of scaling laws in complex systems
超统计的热力学形式主义的公式化和复杂系统中标度定律的系统推导
  • 批准号:
    20540374
  • 财政年份:
    2008
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tsallis entropy and nonextensive generalization of Boltzmann-Gibbs statistical mechanics
Tsallis 熵和 Boltzmann-Gibbs 统计力学的非广延推广
  • 批准号:
    12640381
  • 财政年份:
    2000
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Student Design Essay Competition "Challenges in the Design of Complex Systems"; Travel Support to ASME IDETC 2024, ASME IDETC 2025, and ASME IDETC 2026 Conferences
学生设计征文比赛“复杂系统设计中的挑战”;
  • 批准号:
    2345214
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Applying a complex systems perspective to investigate the relationship between choreography and agent-based modeling as tools for scientific sense-making
应用复杂系统的视角来研究编排和基于代理的建模之间的关系,作为科学意义构建的工具
  • 批准号:
    2418539
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Continuing Grant
7th Northeast Regional Conference on Complex Systems (NERCCS-7); Potsdam New York; 20-22 March 2024
第七届东北地区复杂系统会议(NERCCS-7);
  • 批准号:
    2406593
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
  • 批准号:
    2301197
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Quantifying Agency in time evolving complex systems.
量化随时间演化的复杂系统的代理。
  • 批准号:
    EP/W007142/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Research Grant
PROGRAM MANAGEMENT, TRAINING SUPPORT AND TECHNICAL SERVICES FOR HIGHLY COMPLEX SYSTEMS
高度复杂系统的项目管理、培训支持和技术服务
  • 批准号:
    10953823
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Improving Students’ Modeling Skills for Engineering Complex Systems
提高学生工程复杂系统的建模技能
  • 批准号:
    2235999
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Facing Climate Change in Poverty: Generating a Complex Systems Model at the Climate Change-Poverty-Health Nexus
面对贫困中的气候变化:在气候变化-贫困-健康关系中生成复杂的系统模型
  • 批准号:
    485335
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Operating Grants
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234031
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了