Projective item response theory models for count data and their application as interpretable approximations to black box models of machine learning
计数数据的投影项目响应理论模型及其作为机器学习黑盒模型的可解释近似的应用
基本信息
- 批准号:463078117
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Item Response Theory (IRT) provides measurement models for latent variables. Person-specific latent variable estimates and their measurement errors can be calculated in a variety of situations. IRT thus is the most comprehensive statistical basis for the operative use and evaluation of diagnostic testing in psychology and empirical educational research. Compared to IRT methods for binary data, count data IRT models are underdeveloped. Many count data IRT models use the Poisson distribution, but the resulting conditional equidispersion assumption is rarely empirically defensible. Current approaches based on the Conway-Maxwell-Poisson distribution solve this problem, but so far cannot take factor loadings into account. In applications, especially when unstructured indicators are to be used, multidimensional latent variable constellations are plausible. With projective IRT methods it is possible to derive an empirically indistinguishable one-dimensional IRT model with local item dependence, which is favorable for interpretation and further use. Therefore, projective IRT models are generalized to the count data case. In particular, multidimensional IRT models can be projected on their main dimension. Machine learning methods are seen as powerful data analytical tools in many areas of psychology, but also in the field of educational data mining. Results of many machine learning methods are difficult to interpret. The projective IRT models developed in this research project are applied as easily interpretable surrogate models in situations where a black box machine learning model is used for its predictive performance or its classification accuracy. This results in an interpretable approximation to a black box model, which helps to better understand it. Since multi-dimensional and even high-dimensional latent variable constellations are numerically complex, an EM algorithm for a general count data IRT model with factor loadings is developed. All common count data distributions with over- and under-dispersion will be considered, as well as covariates at the person and item level and their interactions.
项目反应理论(IRT)提供了潜在变量的测量模型。个人特定的潜在变量估计及其测量误差可以在各种情况下计算。因此,IRT是心理学和实证教育研究中诊断测试的操作使用和评估的最全面的统计基础。 与二进制数据的项目反应理论方法相比,计数数据的项目反应理论模型还不成熟。许多计数数据IRT模型使用泊松分布,但由此产生的条件等离差假设很少在经验上站得住脚。目前基于康威-麦克斯韦-泊松分布的方法解决了这个问题,但到目前为止还不能考虑因素负载。在应用中,特别是当使用非结构化指标时,多维潜在变量星座是合理的。利用投射IRT方法可以推导出一个具有局部项目依赖的一维IRT模型,该模型有利于解释和进一步应用。因此,投射IRT模型被推广到计数数据的情况。特别是,多维IRT模型可以在其主维度上进行投影。机器学习方法在心理学的许多领域都被视为强大的数据分析工具,但在教育数据挖掘领域也是如此。许多机器学习方法的结果很难解释。在这个研究项目中开发的投射IRT模型被应用为易于解释的替代模型,在黑盒机器学习模型用于其预测性能或分类准确性的情况下。由于多维甚至高维潜变量星座在数值上是复杂的,本文提出了一种带因子加载的一般计数数据IRT模型的EM算法。将考虑具有过度分散和欠分散的所有常见计数数据分布,以及人员和项目水平的协变量及其相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Philipp Doebler其他文献
Professor Dr. Philipp Doebler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Philipp Doebler', 18)}}的其他基金
Educational Progress of Children at Risk of Low Academic Achievement: A Psychometrically Informed Investigation of Educational Outcomes and Resilience Factors with Longitudinal Data of the National Educational Panel Study
面临学业成绩低下风险的儿童的教育进展:利用国家教育小组研究的纵向数据对教育成果和弹性因素进行心理测量调查
- 批准号:
390666287 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Infrastructure Priority Programmes
The International Cognitive Ability Resource
国际认知能力资源
- 批准号:
243090733 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Generative Item, Response, and Feedback Models in Assessment and Learning
职业:评估和学习中的生成项目、响应和反馈模型
- 批准号:
2237676 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Advancing Equity in Early Childhood Developmental Screening Through Item Response Theory and User-Centered Design
通过项目反应理论和以用户为中心的设计促进幼儿发展筛查的公平性
- 批准号:
10808542 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Test analysis methodology connecting classical test theory and item response theory
连接经典测试理论和项目反应理论的测试分析方法
- 批准号:
22K18633 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Applying Item Response Theory to Improve Patient Reported Outcome Use in Dermatology Clinical Practice
应用项目反应理论改善皮肤科临床实践中患者报告的结果使用
- 批准号:
10655603 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Applying Item Response Theory to Improve Patient Reported Outcome Use in Dermatology Clinical Practice
应用项目反应理论改善皮肤科临床实践中患者报告的结果使用
- 批准号:
10524835 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
- 批准号:
RGPIN-2018-05357 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Semi-parametric multidimensional item response models for large-scale and operational testing
用于大规模和操作测试的半参数多维项目响应模型
- 批准号:
RGPIN-2018-05357 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Partially Ordered Item Response Modeling for Longitudinal and Multivariate Data
纵向和多元数据的偏序项目响应建模
- 批准号:
2120174 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Assessment of anomia: Improving efficiency and utility using item response theory
失范评估:利用项目反应理论提高效率和效用
- 批准号:
10245147 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Assessment of anomia: Improving efficiency and utility using item response theory
失范评估:利用项目反应理论提高效率和效用
- 批准号:
10689106 - 财政年份:2020
- 资助金额:
-- - 项目类别: