Euler-Lagrange correspondence of ultra-discrete systems
超离散系统的欧拉-拉格朗日对应
基本信息
- 批准号:15560055
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is well known that Burgers cellular automaton includes Rule184 elementary cellular automaton, which is the basic traffic flow model Burgers CA is an Euler representation equation, in which variable expresses a strength of a field. Recently, Lagrange representation of Rule 184 has been found, in which variable expresses a position of particles. As this representation is expressed in a form of Max-Plus algebra, it is natural to consider the link between two representations. In the paper "Euler-Lagrange correspondence of cellular automaton for traffic-flow models, J.Matsukidaira and KNishinari, Phys.Rev.Lett.Vol.90,No.8,p088701(2003)", we have found the transformation formula between Euler representation and Lagrange representation We have been able to obtain this formula by using a new algebraic formula between Max-Plus algebra and Step function. We have also applied this method to multi-value, multi-velocity traffic flow models and have been able to obtain Euler-Lagrange correspondence of the Fukui-Ishibashi model and the quick-start model Furthermore, we have applied this method to soliton cellular automata and have succeeded to find the Euler-Lagrange correspondence of Box and Ball system. We are now preparing the paper for this result.
众所周知,Burgers元胞自动机包括Rule 184初等元胞自动机,它是基本的交通流模型Burgers CA是一个欧拉表示方程,其中变量表示场的强度。最近,已经发现了规则184的拉格朗日表示,其中变量表示粒子的位置。由于这种表示是以Max-Plus代数的形式表示的,因此很自然地要考虑两种表示之间的联系。在论文“交通流模型的元胞自动机的欧拉-拉格朗日对应,J.Matsukidaira和KNishinari,Phys.Rev.Lett.Vol.90,No.8,p088701(2003)"中,我们找到了欧拉表示和拉格朗日表示之间的转换公式,并利用Max-Plus代数和阶梯函数之间的一个新的代数公式得到了这个公式。我们还将此方法应用于多值、多速度交通流模型,得到了Fukui-Ishibashi模型和快速启动模型的Euler-Lagrange对应。此外,我们还将此方法应用于孤立子元胞自动机,成功地得到了Box和Ball系统的Euler-Lagrange对应。我们现在正在为这一结果准备论文。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Matsukidaira, K.Nishinari: "Euler-Lagrange correspondence of generalized Burgers cellular automaton"J.Mod.Phys.C. 15巻4号. (2004)
J.Matsukidaira、K.Nishinari:“广义伯格元胞自动机的欧拉-拉格朗日对应”,J.Mod.Phys.C,第 15 卷,第 4 期(2004 年)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Euler–Lagrange Correspondence Of Generalized Burgers Cellular Automaton
- DOI:10.1142/s0129183104005917
- 发表时间:2003-11
- 期刊:
- 影响因子:1.9
- 作者:J. Matsukidaira;K. Nishinari
- 通讯作者:J. Matsukidaira;K. Nishinari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUKIDAIRA Junta其他文献
MATSUKIDAIRA Junta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUKIDAIRA Junta', 18)}}的其他基金
Construction of particle cellular automata models using the ultradiscretization method
使用超离散化方法构建粒子元胞自动机模型
- 批准号:
22560068 - 财政年份:2010
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on conserved cellular automata and their particle systems by ultradiscrete method
守恒元胞自动机及其粒子系统的超离散方法研究
- 批准号:
18560065 - 财政年份:2006
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of an Asynchronous Cellular Automata Based on Termites
基于白蚁的异步元胞自动机的开发
- 批准号:
23KJ2050 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantum Walks and Cellular Automata for Quantum Information Processing
用于量子信息处理的量子行走和元胞自动机
- 批准号:
2310794 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Standard Grant
Dynamics of linear cellular automata
线性元胞自动机的动力学
- 批准号:
573897-2022 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
University Undergraduate Student Research Awards
Quantum Cellular Automata Dynamics: Integrability, Many-Body Decoherence, and Complex Entanglement
量子元胞自动机动力学:可积性、多体退相干和复杂纠缠
- 批准号:
2210566 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Continuing Grant
Study on Analytic Cellular Automata
解析元胞自动机研究
- 批准号:
20K03693 - 财政年份:2020
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using asynchronous and non-uniform cellular automata as computational resources
使用异步和非均匀元胞自动机作为计算资源
- 批准号:
19K12143 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cellular automata models of cardiac conduction
心脏传导的细胞自动机模型
- 批准号:
538667-2019 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
University Undergraduate Student Research Awards
Modelling the failure of dual phase steel sheets using a meso-scale finite element - cellular automata framework
使用细观尺度有限元元胞自动机框架对双相钢板的失效进行建模
- 批准号:
543726-2019 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Engage Grants Program
Analysis of cellular automata by symbolic sequence space diagram
元胞自动机的符号序列空间图分析
- 批准号:
18K13457 - 财政年份:2018
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simulation and Design of Molecular Spin Quantum-Dot Cellular Automata
分子自旋量子点元胞自动机的模拟与设计
- 批准号:
17K14550 - 财政年份:2017
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




