Foundations of Supervised Deep Learning for Inverse Problems
逆问题的监督深度学习基础
基本信息
- 批准号:464101190
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the last decade, deep learning methods have excelled at various data processing tasks including the solution of ill-posed inverse problems. While many works have demonstrated the superiority of such deep networks over classical (e.g. variational) regularization methods in image reconstruction, the theoretical foundation for truly understanding deep networks as regularization techniques, which can reestablish a continuous dependence of the solution on the data, is largely missing. The goal of this proposal is to close this gap in three step: First we will study deep network architectures that map a discrete (finite dimensional) representation of the data to a discrete representation of the solution in such a way, that we establish data consistency in a similar way as discretizations of classical regularization methods do. Secondly, we will study how to design, interpret and train deep networks as mappings between infinite-dimensional function spaces. Finally, we will investigate how to transfer finite-dimensional error estimates to the infinite-dimensional setting, by making suitable assumptions on the data to reconstruct as well as the data to train the network with, and utilizing suitable regularization schemes for the supervised training of the networks themselves. We will evaluate our networks and test our finding numerically on linear inverse problems in imaging using image deconvolution and computerized tomography as common test settings.
在过去的十年中,深度学习方法在各种数据处理任务中表现出色,包括解决不适定逆问题。虽然许多工作已经证明了这种深度网络在图像重建中优于经典(例如变分)正则化方法,但真正理解深度网络作为正则化技术的理论基础,可以重新建立解决方案对数据的连续依赖性,在很大程度上是缺失的。本提案的目标是通过三个步骤缩小这一差距:首先,我们将研究深度网络架构,该架构将数据的离散(有限维)表示映射到解决方案的离散表示,以便我们建立数据一致性。与经典正则化方法的离散化类似的方式。其次,我们将研究如何将深度网络设计、解释和训练为无限维函数空间之间的映射。最后,我们将研究如何将有限维的误差估计转移到无限维的设置,通过对重建数据以及训练网络的数据进行适当的假设,并利用适当的正则化方案进行网络本身的监督训练。我们将评估我们的网络,并测试我们的发现数字上的线性逆问题成像使用图像反卷积和计算机断层扫描作为常见的测试设置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Martin Burger其他文献
Professor Dr. Martin Burger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Martin Burger', 18)}}的其他基金
Nonlinear mass-preserving registration for magnetic resonance imaging (MRI) and positron emission tomography (PET)
磁共振成像 (MRI) 和正电子发射断层扫描 (PET) 的非线性质量保存配准
- 批准号:
214620425 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Sparsity-constrained inversion with tomographic applications
层析成像应用的稀疏约束反演
- 批准号:
190846722 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Optimal control of self-consistent classical and quantum particle systems
自洽经典和量子粒子系统的最优控制
- 批准号:
130703134 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Deep-Learning Based Regularization of Inverse Problems
基于深度学习的反问题正则化
- 批准号:
464101359 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Investigating the Trustworthiness of Deep Pre-trained and Self-supervised Learned Model.
研究深度预训练和自监督学习模型的可信度。
- 批准号:
24K20806 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
A data-saving and self-supervised deep learning system for continuous ischemic stroke assessment
用于连续缺血性中风评估的数据保存和自我监督深度学习系统
- 批准号:
24K15011 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-supervised deep-learned physics-informed PET image reconstruction for oncology
用于肿瘤学的自监督深度学习物理学 PET 图像重建
- 批准号:
2886561 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Self-Supervised Learning to Improve Transferability of Agricultural Deep Learning Models
自监督学习提高农业深度学习模型的可迁移性
- 批准号:
574936-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Domain-Specialized Image Annotation for Supervised Deep Learning
用于监督深度学习的领域专业图像注释
- 批准号:
574920-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Efficient and Reproducible Image Annotation for Supervised Deep Learning with Small Data
用于小数据监督深度学习的高效且可重复的图像注释
- 批准号:
RGPIN-2021-02428 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
DGDND-2022-05397 - 财政年份:2022
- 资助金额:
-- - 项目类别:
DND/NSERC Discovery Grant Supplement
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
- 批准号:
10463080 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A Biologically-plausible Deep Learning framework to model self-supervised learning in the visual cortex
一种生物学上合理的深度学习框架,用于模拟视觉皮层的自我监督学习
- 批准号:
566601-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
- 批准号:
10745272 - 财政年份:2022
- 资助金额:
-- - 项目类别: