Sparsity-constrained inversion with tomographic applications

层析成像应用的稀疏约束反演

基本信息

  • 批准号:
    190846722
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2011
  • 资助国家:
    德国
  • 起止时间:
    2010-12-31 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The proposed project focuses on similarities and differences between Bayesian and deterministicapproaches to sparsity-constrained regularization methods, both in discrete and continuoussettings. The sparsity approach assumes that a model for the background is known and thatonly deviations from the background, such as inclusions or defects, have to be reconstructed.The deviations should be efficiently represented with few coefficients in a suitable basis orframe. Regarding theory, the limits of current knowledge will be pushed to cover nonlinearinverse problems, non-Gaussian noise models and connections between continuous and discreteinversion frameworks. Regarding computation, new, robust and efficient sparsity-promotinginversion algorithms will be developed. Regarding applications, the proposed inversion methodsare tested first with simple test cases and simulated data and later with measured data relatedto bioluminescence and limited-data X-ray tomography.
该项目的重点是在离散和连续设置的稀疏约束正则化方法的贝叶斯和deterministicapproaches之间的相似性和差异。稀疏性方法假设背景模型是已知的,并且只有与背景的偏差(如夹杂物或缺陷)需要重建,这些偏差应该在合适的基或框架中用很少的系数有效地表示。在理论方面,将推动现有知识的限制,以涵盖非线性反演问题,非高斯噪声模型和连续和离散反演框架之间的连接。在计算方面,将开发新的、鲁棒的和有效的稀疏促进反演算法。在应用方面,首先用简单的测试用例和模拟数据测试了所提出的反演方法,然后用与生物发光和有限数据X射线断层扫描相关的测量数据测试了所提出的反演方法。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximation of penalty terms in Tikhonov functionals—theory and applications in inverse problems
  • DOI:
    10.1088/0266-5611/30/7/075005
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    R. Strehlow;K. Kazimierski
  • 通讯作者:
    R. Strehlow;K. Kazimierski
Regularizing properties of the Mumford–Shah functional for imaging applications
  • DOI:
    10.1088/0266-5611/30/3/035007
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    M. Jiang;P. Maass;Thomas Page
  • 通讯作者:
    M. Jiang;P. Maass;Thomas Page
Norm sensitivity of sparsity regularization with respect to p
关于 p 的灵敏度稀疏正则化范数
  • DOI:
    10.1088/0266-5611/28/10/104009
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    K. Kazimierski;P. Maass;R. Strehlow
  • 通讯作者:
    R. Strehlow
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Martin Burger其他文献

Professor Dr. Martin Burger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Martin Burger', 18)}}的其他基金

Nonlinear mass-preserving registration for magnetic resonance imaging (MRI) and positron emission tomography (PET)
磁共振成像 (MRI) 和正电子发射断层扫描 (PET) 的非线性质量保存配准
  • 批准号:
    214620425
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimal control of self-consistent classical and quantum particle systems
自洽经典和量子粒子系统的最优控制
  • 批准号:
    130703134
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Regularisierung mit Singulären Energien
奇异能量正则化
  • 批准号:
    55190719
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Foundations of Supervised Deep Learning for Inverse Problems
逆问题的监督深度学习基础
  • 批准号:
    464101190
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Deep-Learning Based Regularization of Inverse Problems
基于深度学习的反问题正则化
  • 批准号:
    464101359
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
  • 批准号:
    2337598
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Foundations of semi-infinite and equilibrium constrained optimization
职业:半无限和平衡约束优化的基础
  • 批准号:
    2340858
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Investigating Fluid Surface Dynamics in Constrained Geometries
职业:研究受限几何形状中的流体表面动力学
  • 批准号:
    2340259
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
  • 批准号:
    2323120
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Highly Tunable Dry Adhesion through Constrained Buckling
事业:通过约束屈曲实现高度可调的干附着力
  • 批准号:
    2239507
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structure and dynamics of the subcontinental lithospheric mantle over the Central and Eastern North American continent, constrained by numerical modeling based on tomography models
基于层析成像模型的数值模拟约束北美大陆中部和东部次大陆岩石圈地幔的结构和动力学
  • 批准号:
    2240943
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    NE/Y005260/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了