Generative artificial intelligence-based algorithm to increase the predictivity of preclinical studies while keeping sample sizes small
基于生成人工智能的算法可提高临床前研究的预测性,同时保持较小的样本量
基本信息
- 批准号:464505234
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The translation of basic science into new clinically effective substances often seems unsatisfactory. This has been attributed to inadequate data quality standards and small sample sizes in preclinical studies. The development of an artificial intelligence (AI)-based method is proposed to artificially generate valid additional data without increasing the sample size in preclinical experiments. The proposed method is based on generative models (GM), which are capable of generating valid data from a non-trivial, possibly high-dimensional distribution, which are initially unknown and often can only be described analytically to a limited extent. The generation of valid new data therefore requires an algorithm that can recognize high-dimensional structures in the data and then use this structure to generate new data that is consistent with the available data.This project aims to compare the most promising approaches in density-based clustering and data generation for their suitability to generate more but appropriate data from too few data. Based on extensive previous experience and preliminary experimental results, a method based on emergent self-organizing maps (ESOM), as structure- detecting algorithm based on artificial neural networks, will be developed. It will be compared with alternative methods of artificial data generation and distance-based clustering including but not exclusively limited to Generative Adversarial Networks (GAN), Gaussian mixture models (GMM), hidden Markov models (HMM), naïve Bayesian models, latent dirichlet allocation and (restricted) Boltzman machines and DataBoost-IM, as well as hierarchical DBSCAN, adaptive density peak clustering, and adaptive affinity propagation clustering. The most suitable approach should be developed into a feasible method for preclinical studies.The work programme will thus include (i) basic research to further develop and refine the generative ESOM method including the comparative evaluation of a possible alternative method, (ii) its comparison with alternative contemporary methods of generative machine-learning for of data generation and density based clustering, (iii) the application of the most suitable method to various different biomedical data sets including the development of a working solution for the generation of valid new cases in data from preclinical research, accompanied and followed by (iv) the implementation of the ESOM-based generative method of data completion as a freely available software solution.Thus, the primary objective of the planned project is the development of a method that uses machine-learning algorithms for valid and probabilistic generation of experimental data that, together with the original data, provides the high data density necessary to draw valid conclusions from preclinical experiments.
将基础科学转化为新的临床有效物质似乎常常令人不满意。这是由于临床前研究的数据质量标准不足和样本量小。提出了一种基于人工智能(AI)的方法,在不增加临床前实验样本量的情况下,人工生成有效的附加数据。所提出的方法是基于生成模型(GM),它能够从一个非平凡的,可能是高维的分布中生成有效的数据,这些分布最初是未知的,通常只能在有限的程度上进行分析描述。因此,生成有效的新数据需要一种算法,该算法可以识别数据中的高维结构,然后使用该结构生成与可用数据一致的新数据。本项目旨在比较基于密度的聚类和数据生成中最有前途的方法,看看它们是否适合从太少的数据中生成更多但合适的数据。本文将基于大量的经验和初步的实验结果,提出一种基于紧急自组织映射(ESOM)的人工神经网络结构检测算法。它将与人工数据生成和基于距离的聚类的替代方法进行比较,包括但不限于生成对抗网络(GAN)、高斯混合模型(GMM)、隐马尔可夫模型(HMM)、naïve贝叶斯模型、潜在狄利克雷分配和(受限)玻尔兹曼机和DataBoost-IM,以及分层DBSCAN、自适应密度峰值聚类和自适应亲和传播聚类。最合适的方法应该发展成为临床前研究的可行方法。因此,工作方案将包括:(i)进一步发展和完善生成式ESOM方法的基础研究,包括对一种可能的替代方法进行比较评价;(ii)将其与用于数据生成和基于密度的聚类的其他当代生成式机器学习方法进行比较;(三)将最合适的方法应用于各种不同的生物医学数据集,包括为从临床前研究数据中生成有效新病例制定工作解决方案,同时并随后(四)实施基于esom的数据补全生成方法,作为免费提供的软件解决方案。因此,计划项目的主要目标是开发一种方法,该方法使用机器学习算法来有效和概率地生成实验数据,这些数据与原始数据一起,提供了从临床前实验中得出有效结论所需的高数据密度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jörn Lötsch其他文献
Professor Dr. Jörn Lötsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jörn Lötsch', 18)}}的其他基金
Noninvasive central modulation of pain follwing TMS inhibition of the secondary somatosensory cortex in healthy subjects
TMS 抑制健康受试者次级体感皮层后的无创中枢疼痛调节
- 批准号:
245507812 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Differenzielle Wirkungen von Cannabis auf Schmerz
大麻对疼痛的不同影响
- 批准号:
165544272 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Assoziation von extra- und intrazellulären Virustatikakonzentrationen mit deren antiviralen Wikungen bei chronischer Hepatitis C
细胞外和细胞内抗病毒浓度与其在慢性丙型肝炎中的抗病毒作用的关系
- 批准号:
70305494 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Clinical Research Units
Populations-Pharmakokinetik und Pharmakodynamik von Morphin und Morphin-6-Glucuronid
吗啡和吗啡-6-葡萄糖苷酸的群体药代动力学和药效学
- 批准号:
5213624 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
利用人工microRNA技术改良水稻抗虫性的应用及其分子机理的研究
- 批准号:31000742
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
中国棉铃虫核多角体病毒基因组库和分子进化
- 批准号:30540076
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:专项基金项目
相似海外基金
Assessments for writing with generative artificial intelligence
使用生成人工智能进行写作评估
- 批准号:
DP240100069 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Planning: Research in Generative Artificial Intelligence for Enhanced Analysis in the US Intelligence Community
规划:用于增强美国情报界分析的生成人工智能研究
- 批准号:
2332095 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
I-Corps: A Framework for Streamlining the Development and Deployment of Generative Artificial Intelligence (AI) Models on Enterprise Data
I-Corps:简化企业数据生成人工智能 (AI) 模型的开发和部署的框架
- 批准号:
2335828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
AI-Powered Uncovering of Mechanisms in Cancer Through Causal Discovery Analysis and Generative Modeling of Heterogeneous Data
人工智能通过因果发现分析和异构数据生成模型揭示癌症机制
- 批准号:
10581180 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Incorporating Generative Artificial Intelligence into Engineering Writing Courses
将生成人工智能纳入工程写作课程
- 批准号:
2315294 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Impact of Generative Artificial Intelligence (GAI) on Engineering Education Practices
EAGER:生成人工智能 (GAI) 对工程教育实践的影响
- 批准号:
2319137 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Generative Adversarial Networks for MRI-driven Radiation Therapy
用于 MRI 驱动放射治疗的生成对抗网络
- 批准号:
489415 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Generative adversarial brain: a comprehensive study of multi-agent learning by natural and artificial intelligence
生成对抗性大脑:自然智能和人工智能多智能体学习的综合研究
- 批准号:
22H04998 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
Brain phantom generation by generative adversarial net (GAN) for AI-based emission tomography
通过生成对抗网络 (GAN) 生成脑模型,用于基于人工智能的发射断层扫描
- 批准号:
10466967 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Generative Diffusion of Artificial Intelligence Innovation: An Innovation Ecological Approach
人工智能创新的生成扩散:一种创新生态方法
- 批准号:
2120540 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant