Extraction of nonlinear structural change of time series from incomplete large-scale data

从不完整的大规模数据中提取时间序列的非线性结构变化

基本信息

  • 批准号:
    16500170
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

As theoretical viewpoints, we proposed the following models, and implemented the programs of these models with the statistical language S. In order to verify proposed methodology, we made case studies about care service evaluation data, POS (Point Of Sales) data with customer ID and Web access log data. In addition, we participated in the data analysis competition sponsored by the Operations Research Society of Japan etc..1, We consider methods to extract types of individuals which have multivariate history. We use SOM (Self-Organizing Maps) to extract basic types of individuals at a specified point in time. Next, we define new distances between distributions of basic types on the SOM map using distribution functions. We then map the distributions of behavior types in order to obtain customer types over the long-term by SOM (Seki, et al. 2006). In addition, we consider a method to make index using spatial statistics.2, We propose models which extract nonlinear structural changes in heterogeneous time series.(1) We propose a model merge method, in order to obtain a segmentation whose segment has a homogeneous functional relation between variates.(2) We generalize the SOM when there are two variable groups. We propose two stage SOM, which retains each structure of two variable groups, and extracts types of individuals.
作为理论观点,我们提出了以下模型,并用统计语言S实现了这些模型的程序。为了验证所提出的方法,我们进行了案例研究的护理服务评估数据,POS(销售点)数据与客户ID和Web访问日志数据。此外,我们还参加了由日本运筹学会等主办的数据分析竞赛。1、研究了提取具有多元历史的个体类型的方法。我们使用SOM(自组织映射)来提取在特定时间点的基本类型的个人。接下来,我们使用分布函数定义SOM图上基本类型分布之间的新距离。然后,我们绘制行为类型的分布图,以便通过SOM获得长期的客户类型(Seki,et al. 2006)。此外,我们还考虑了一种基于空间拓扑的索引方法。2、提出了一种提取非均匀时间序列非线性结构变化的模型。(1)我们提出了一种模型合并方法,以获得一个分段的变量之间具有齐次函数关系的分割。(2)我们推广SOM时,有两个变量组。我们提出了两阶段SOM,它保留了两个变量组的每个结构,并提取类型的个人。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
交互作用基準による再帰分割線形モデル
具有交互标准的递归分区线性模型
Behavior Pattern Extraction by Self-Organizing Maps of personal usage history - predicting when credit-card users will switch to credit-card cashing based on personal credit histories -
通过个人使用历史自组织地图提取行为模式 - 根据个人信用历史预测信用卡用户何时会转向信用卡兑现 -
買回りタイプによる顧客購買行動の理解
按购物类型了解客户的购买行为
Prediction of care class by local additive reference to prototypical examples
通过对典型示例的局部附加参考来预测护理类别
A Model to predict customers' purchase behavior of compact disk based of analysis of fan structure
基于风扇结构分析的光盘顾客购买行为预测模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SEKI Yoichi其他文献

リン脂質代謝酵素IID型分泌性ホスホリパーゼA_2 (sPLA_2-IID)は炎症の寛解を制御する
磷脂代谢酶 IID 型分泌磷脂酶 A_2 (sPLA_2-IID) 调节炎症缓解
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    SEKI Yoichi;KATAYAMA Hiroko;MORI Taizo;ISEKI Masanori;TAKAKI Satoshi;Kenichi Kono;三木寿美
  • 通讯作者:
    三木寿美
慢性腎臓病を合併する心疾患患者の酸素摂取量を推定するための心拍減衰応答と下肢筋力の有用性
心率衰减反应和下肢肌力对于估计患有慢性肾病的心脏病患者的摄氧量的有用性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    SEKI Yoichi;KATAYAMA Hiroko;MORI Taizo;ISEKI Masanori;TAKAKI Satoshi;河野健一
  • 通讯作者:
    河野健一
Validation of effectiveness of resistance training during hemodialysis : A systematic review
血液透析期间阻力训练有效性的验证:系统评价
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    SEKI Yoichi;KATAYAMA Hiroko;MORI Taizo;ISEKI Masanori;TAKAKI Satoshi;Kenichi Kono
  • 通讯作者:
    Kenichi Kono

SEKI Yoichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SEKI Yoichi', 18)}}的其他基金

Understanding the neural mechanisms of color vision in the central nervous system
了解中枢神经系统色觉的神经机制
  • 批准号:
    25870768
  • 财政年份:
    2013
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of probabilistic transition models using self-organizing of a large-scale histrical data on space-time dimension
利用时空维度上的大规模历史数据的自组织开发概率转换模型
  • 批准号:
    23500344
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extraction of developing type for construction of stochastic causality models from large scale historical data set
从大规模历史数据集中提取发展类型以构建随机因果关系模型
  • 批准号:
    19500232
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of statistical models for knowledge acquisition from large-scale data including multiform samples
开发从包括多种样本在内的大规模数据中获取知识的统计模型
  • 批准号:
    13680507
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data Mining from Large Data Set by Generalized Tree Regression Model
广义树回归模型从大数据集中进行数据挖掘
  • 批准号:
    11680437
  • 财政年份:
    1999
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

CDS&E: Harnessing Self-Organizing Maps for the Discovery of Star Formation in Molecular Clouds
CDS
  • 批准号:
    2107942
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
Development of System for Improving Ability of Students' Scientific Thinking and Expression in Observation and Experiment by Self-Organizing Maps
自组织图谱提高学生观察实验科学思维与表达能力系统的开发
  • 批准号:
    25350191
  • 财政年份:
    2013
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Information-theoretic self-organizing maps and its application
信息论自组织映射及其应用
  • 批准号:
    24500283
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Assessment System for Ability of Children's Scientific Description by Self-Organizing Maps
儿童自组织图谱科学描述能力评价系统的开发
  • 批准号:
    22500849
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Node Localization for Wireless Sensor Networks based on Self-Organizing Maps Algorithm
基于自组织映射算法的无线传感器网络节点定位
  • 批准号:
    22500075
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Predicting enzyme functions based on complementarily in molecular interactions by using radial distribution functions with a self-organizing maps
通过使用具有自组织图的径向分布函数,基于分子相互作用的互补性来预测酶功能
  • 批准号:
    20700263
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on Japanese corporate ratings by Rating agencies with Artificial Neural Network and Self-organizing Maps
基于人工神经网络和自组织图的评级机构日本企业评级研究
  • 批准号:
    19530374
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of generalized theory of self-organizing maps and its applications
自组织映射广义理论的建立及其应用
  • 批准号:
    17500193
  • 财政年份:
    2005
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: The Development of Self-Organizing Maps for Drug Discovery
SBIR 第一阶段:药物发现自组织图的开发
  • 批准号:
    0319787
  • 财政年份:
    2003
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Analysis of public finance issues by self-organizing maps and their further development as analytical tools : Applications of the Self-Organizing Map.
通过自组织映射分析公共财政问题及其作为分析工具的进一步发展:自组织映射的应用。
  • 批准号:
    13630117
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了