DBT-DFG Indo-German Research Proposal: The recruitment of the γ-TuRC to the Sas-6 cartwheel for centriole microtubule assembly

DBT-DFG 印度-德国研究提案:将 γ-TuRC 募集到 Sas-6 侧手翻以进行中心粒微管组装

基本信息

项目摘要

Centrioles are microtubule-based subcellular structures that constitute the core of centrosomes, the main microtubule-nucleating organelles in animal cells. In G1 phase of the cell cycle two centrioles surrounded by the pericentriolar material give rise to a functional centrosome. During S phase, each of the two mother centrioles initiates assembly of a new daughter centriole at its proximal end. The orthogonally arranged mother-daughter centriole pair stays connected during mitosis when each pair associates with one of the two poles of the mitotic spindle. With cytokinesis each cell inherits one centriole pair that then disengages. Centrioles consist of 9 microtubule triples that each contain radially arranged A, B and C microtubules. The initial assembly of centriolar microtubules requires a cartwheel-like nine-fold symmetric scaffold consisting of the protein Sas-6 that provides the base for assembly of the A-microtubules. A-microtubule assembly is a crucial step for the duplication of centrioles, the biogenesis of centrosomes and the correct formation of the mitotic spindle and its failure has been linked to chromosome missegregation and cancer. Therefore, it is of fundamental importance to understand how centrioles and in particular the A-tubules, as a key event in early centriole biogenesis, assemble mechanistically. Cryo-electron microscopy (cryo-EM) of human procentrioles previously indicated presence of cap-like structure at the base of the centriolar microtubule resembling the γ-tubulin ring complex (γ-TuRC), the major microtubule-nucleating entity. Recently, Manna has shown interaction of the γ-TuRC with SAS-6 and Schiebel reported the structure of the γ-TuRC based on cryo-EM analysis. Although, these studies indicate a molecular link of the cartwheel with the centriolar microtubules, how the γ-TuRCs are recruited, organized and activated for assembly of the A-microtubules are not understood and will be addressed in this collaborative study as part of DBT-DFG between India and Germany. Our working model is that the Sas-6 cartwheel recruits the γ-TuRC in S phase through its C-terminus with the subsequent activation of the γ-TuRC and the nucleation of the A-tubules followed by the assembly of the B- and C-tubules. To decipher A-tubule formation in greater detail, we will study the interaction of Sas-6 with the γ-TuRC using negative stain EM and cross-link mass spectrometry analysis (2.3.1), the role of PLK4-mediated phosphorylation in γ-TuRC-C-Sas-6 interaction (2.3.2), cryo-EM analysis of the γ-TuRC-Sas-6 complex (2.3.3), how events at the γ-TuRC-Sas-6 super-complex lead to A-tubule formation using super resolution microscopy (2.3.4) and biochemical approaches (2.3.5). Altogether, our proposal will unravel the mechanisms of centriolar microtubule assembly from a novel perspective, by combining ultra-structural analyses of the key protein complexes with regulation of their interactions that lead to the biogenesis of centrioles.
中心粒是以微管为基础的亚细胞结构,构成中心体的核心,中心体是动物细胞中主要的微管成核细胞器。在细胞周期的G1期,两个中心粒被中心粒周围的物质包围,形成一个功能中心体。在S期,两个母亲中心粒中的每一个在其近端开始组装一个新的女儿中心粒。在有丝分裂过程中,当每对中心粒与有丝分裂纺锤体的两极之一时,正交排列的母子中心粒对保持连接。随着胞质分裂,每个细胞继承一对中心粒,然后分离。中心粒由9个微管三联体组成,每个微管三联体含有放射状排列的A、B和C微管。中心粒微管的初始组装需要一个侧手翻状的九重对称支架,该支架由蛋白Sas-6组成,为A-微管的组装提供基础。微管组装是中心粒复制、中心体发生和纺锤体正确形成的关键步骤,其失败与染色体错误分离和癌症有关。因此,了解中心粒,特别是A-小管,作为早期中心粒生物发生的关键事件,如何组装机械是至关重要的。人原中心粒的冷冻电子显微镜(cryo-EM)先前表明中心粒微管基部存在帽状结构,类似于γ-微管蛋白环复合物(γ-TuRC),这是主要的微管成核实体。最近,Manna已经显示了γ-TuRC与SAS-6的相互作用,Schiebel基于冷冻-EM分析报道了γ-TuRC的结构。尽管这些研究表明侧手翻与中心粒微管存在分子联系,但γ-TuRC如何被招募、组织和激活以组装A-微管尚不清楚,将在本合作研究中作为印度和德国之间DBT-DFG的一部分进行讨论。我们的工作模型是,Sas-6侧手翻通过其C-末端招募S期的γ-TuRC,随后激活γ-TuRC并使A-小管成核,然后组装B-和C-小管。为了更详细地解释A-小管的形成,我们将使用负染EM和交联质谱分析来研究Sas-6与γ-TuRC的相互作用(2.3.1),PLK 4介导的磷酸化在γ-TuRC-C-Sas-6相互作用中的作用(2.3.2),γ-TuRC-Sas-6复合物的冷冻EM分析(2.3.3),使用超分辨率显微镜(2.3.4)和生物化学方法(2.3.5)研究γ-TuRC-Sas-6超复合物中的事件如何导致A-小管形成。总而言之,我们的建议将从一个新的角度解开中心粒微管组装的机制,通过结合超微结构分析的关键蛋白质复合物与调节它们的相互作用,导致中心粒的生物起源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Elmar Schiebel其他文献

Professor Dr. Elmar Schiebel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Elmar Schiebel', 18)}}的其他基金

Insertion of the nuclear pore complex and the yeast spindle pole body into the nuclear envelope.
将核孔复合体和酵母纺锤体极体插入核膜中。
  • 批准号:
    202157009
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The role of the hCDC14B-HIPK2-MeCP2 axis in mitotic cell fate determination.
hCDC14B-HIPK2-MeCP2 轴在有丝分裂细胞命运决定中的作用。
  • 批准号:
    22423221
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spatial organisation of centrosomes by centrosome cohesion and centrosome nuclear envelope interactions.
通过中心体内聚力和中心体核膜相互作用进行中心体的空间组织。
  • 批准号:
    298572189
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF/BIO-DFG: Tuning Microtubule-Actin crosstalk to control Mitotic Fidelity
NSF/BIO-DFG:调节微管-肌动蛋白串扰以控制有丝分裂保真度
  • 批准号:
    2319918
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF/BIO-DFG: Cytochrome c oxidase adaptation to hypoxia in systemic vascular cells - From structure to function
NSF/BIO-DFG:细胞色素 c 氧化酶对全身血管细胞缺氧的适应 - 从结构到功能
  • 批准号:
    2329629
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF/BIO-DFG: The role of ARL 13B in controlling ciliary cAMP signaling
NSF/BIO-DFG:ARL 13B 在控制睫状 cAMP 信号传导中的作用
  • 批准号:
    2329634
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG: Multiscale Data-Physics Models for the Critical Role of Interfaces in Overmolded Thermoplastic Parts
NSF-DFG:多尺度数据物理模型显示界面在包覆成型热塑性零件中的关键作用
  • 批准号:
    2225290
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
  • 批准号:
    2228266
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG: Nonequilibrium Thermal Processing of Nanoparticles via Laser Melting and Fragmentation in Liquid
NSF-DFG:通过激光熔化和液体破碎对纳米颗粒进行非平衡热处理
  • 批准号:
    2302577
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2346885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
  • 批准号:
    2234270
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG: Solvent-Free Manufacturing of Perovskite Large-Scale Electronics
NSF-DFG:钙钛矿大型电子产品的无溶剂制造
  • 批准号:
    2135937
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了