Finitely Bounded Homogeneous Structures
有限有界同质结构
基本信息
- 批准号:467967530
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Homogeneous structures play an important role in model theory, where they provide a rich source of examples and counterexamples. They have a large automorphism group and can be studied using the theory of infinite permutation groups. They naturally appear in several areas of mathematics. Many of the important examples of homogeneous structures are *finitely bounded*, that is, can be described by finitely many forbidden finite substructures. In this way we store and manipulate homogeneous structures computationally, and many fundamental questions about homogenous structures can be posed as algorithmic questions. Indeed, homogeneous structures have applications in theoretical computer science, for example for the study of the computational complexity of constraint satisfaction problems (CSPs), for the studying normal representations of relation algebras, or computation with definable structures. A relatively young and powerful tool in the study of homogeneous structures is structural Ramsey theory. Ramsey theorems for homogeneous structures have applications in the mentioned application areas, but also in topological dynamics, for example for verifying extreme amenability, amenability, and unique ergodicity of topological groups. One of the goals of the project is to answer fundamental open questions about homogeneous structures for large classes, e.g., classes obtained by imposing further model-theoretic assumptions or restrictions on the orbit growth rate. In this way we hope to obtain insights for the mentioned application areas as well.
齐次结构在模型论中扮演着重要的角色,它们提供了丰富的例子和反例。它们有一个大的自同构群,可以用无限置换群理论来研究。它们自然地出现在数学的几个领域。齐次结构的许多重要例子都是有界的,也就是说,可以用许多禁止的有限子结构来描述。通过这种方式,我们可以通过计算来存储和操作同质结构,并且关于同质结构的许多基本问题都可以作为算法问题提出。事实上,齐次结构在理论计算机科学中有应用,例如用于研究约束满足问题(CSP)的计算复杂性,用于研究关系代数的正规表示,或可定义结构的计算。结构拉姆齐理论是研究均匀结构的一个相对年轻而有力的工具。齐次结构的拉姆齐定理在上述应用领域中有应用,但也在拓扑动力学中有应用,例如用于验证拓扑群的极端顺从性,顺从性和唯一遍历性。 该项目的目标之一是回答关于大类同质结构的基本开放问题,例如,通过对轨道增长率施加进一步的模型理论假设或限制而获得的类。通过这种方式,我们也希望获得上述应用领域的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Manuel Bodirsky其他文献
Professor Dr. Manuel Bodirsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Manuel Bodirsky', 18)}}的其他基金
Homogeneous structures, constraint satisfaction problems, and topological clones
同质结构、约束满足问题和拓扑克隆
- 批准号:
280296726 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: Memory Bounded Optimization and Learning
AF:小:内存限制优化和学习
- 批准号:
2341890 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
An adaptive surface for improved modelling of rough wall bounded turbulence
用于改进粗糙壁边界湍流建模的自适应表面
- 批准号:
DP240101743 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
- 批准号:
2889914 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
- 批准号:
2304698 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Universality Investigation of Subcritical Turbulent Transition in Wall-bounded Shear Flow and Development of Stochastic Model for Engineering Application
壁面剪切流中亚临界湍流转变的普遍性研究及工程应用随机模型的发展
- 批准号:
22KJ2814 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Geometric analysis on graphs with Ricci curvature bounded from below
下界里奇曲率图的几何分析
- 批准号:
23K03103 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
- 批准号:
2332057 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2321463 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Mechanism design with decision making among bounded rational agents
有限理性主体决策的机制设计
- 批准号:
23K12453 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists