ECALP: Empirical Computational Argumentation in Legal Proceedings

ECALP:法律诉讼中的经验计算论证

基本信息

项目摘要

This project aims to contribute to the foundations of computational argumentation in legal proceedings in these methodology-oriented areas: (1) robust argument mining in the challenging context of a "small-data" scenario and complex legal domain, and (2) scalable methodologies for data acquisition that require expert knowledge. To do so, we tackle the following three research questions (RQ): RQ1: Foundations. How to annotate, model, and mine legal arguments and argumentation in legal proceedings? RQ2: Contextualization. How to model and recognize similar argumentation patterns in legal proceedings? RQ3: Insights. What is the role of oral and written arguments at human rights courts? These research questions are tackled in three consecutive phases. The first phase is devoted to data acquisition and annotation, the second phase to modeling and empirical analysis, and the third phase to research on argument importance and argument transfer across different legal systems. Within the field of computational argumentation, we identify two key methodological directions where progress in NLP will empower empirical research on legal proceedings - namely, neural approaches that can be deployed and transferred efficiently and Bayesian approaches that provide proper model confidences for expert assessment. We also envision contributions to empirical legal research (such as contrasting theories of legal argumentation models with empirical evidence) and an outreach to the wider natural language processing community through a shared task.
该项目旨在为以下以方法论为导向的领域的法律诉讼中的计算论证奠定基础:(1)在“小数据”场景和复杂法律领域的挑战性背景下进行稳健的论证挖掘,以及(2)需要专业知识的可扩展数据采集方法。为此,我们解决以下三个研究问题 (RQ): RQ1:基础。如何对法律诉讼中的法律论证和论证进行注释、建模和挖掘? RQ2:情境化。如何在法律诉讼中建模和识别类似的论证模式? RQ3:见解。人权法庭的口头和书面辩论有何作用?这些研究问题分三个连续阶段解决。第一阶段致力于数据获取和注释,第二阶段致力于建模和实证分析,第三阶段研究论点重要性和跨不同法律体系的论点转移。在计算论证领域,我们确定了两个关键的方法论方向,NLP 的进展将赋能法律诉讼的实证研究,即可以有效部署和转移的神经方法,以及为专家评估提供适当模型置信度的贝叶斯方法。我们还设想对实证法律研究做出贡献(例如将法律论证模型的理论与实证证据进行对比),并通过共同任务扩展到更广泛的自然语言处理社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Christoph Burchard其他文献

Professor Dr. Christoph Burchard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Christoph Burchard', 18)}}的其他基金

Die Rolle der Strafrechtsvergleichung bei der Europäisierung der Strafrechtspflege
比较刑法在刑事司法欧洲化中的作用
  • 批准号:
    219264374
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Scientific Networks

相似海外基金

Computational approach to catalyst heterogeneity based on non-empirical catalyst nanostructure exploration
基于非经验催化剂纳米结构探索的催化剂非均质性计算方法
  • 批准号:
    22H01865
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surface Effects on Fluid Flows in 3D Printed Micro-channels: Computational Simulations with Empirical Validation
3D 打印微通道中流体流动的表面效应:具有经验验证的计算模拟
  • 批准号:
    1935814
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Empirical and computational solutions for multi-omics single-cell assays
多组学单细胞分析的经验和计算解决方案
  • 批准号:
    DP200102903
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Algorithm configuration for improved empirical run-time scaling to solve huge computational problems
用于改进经验运行时缩放的算法配置,以解决巨大的计算问题
  • 批准号:
    517904-2017
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Co-Heteroscedasticity Models: Empirical Assessment and Computational Methods
协同异方差模型:经验评估和计算方法
  • 批准号:
    19K01588
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elements: Can Empirical SE be Adapted to Computational Science?
要素:经验SE可以适应计算科学吗?
  • 批准号:
    1931425
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Algorithm configuration for improved empirical run-time scaling to solve huge computational problems
用于改进经验运行时缩放的算法配置,以解决巨大的计算问题
  • 批准号:
    517904-2017
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
CAREER: Abstract Universals in (Morpho)Syntax: Computational Characterizations and Empirical Implications
职业:(Morpho)语法中的抽象共相:计算特征和经验含义
  • 批准号:
    1845344
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.
动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。
  • 批准号:
    RGPIN-2014-05560
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
An Empirical and Computational Investigation of Generalisation in Nonword Reading
非单词阅读泛化的实证和计算研究
  • 批准号:
    2215137
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了