Multidimensional probabilistic characterization of slag materials for the optimization of cooling, comminution and separation processes, using statistical image analysis supported by machine learning

使用机器学习支持的统计图像分析,对炉渣材料进行多维概率表征,以优化冷却、通信和分离过程

基本信息

项目摘要

An interdisciplinary approach of different fields (including metallurgy, tomographic imaging, mineral processing, as well as data-driven analytics and modeling) is necessary to improve the recyclability of valuable metals in slag materials. A particularly important point is the adjustment of the slag structure during the formation of slags to improve the performance of potential downstream processes, which requires a detailed quantitative understanding of the relationships between process parameters and descriptors of the slag structure. For this, structural characterization of slag materials based on highly resolved tomographic image data is essential. It enables us to quantify the influence of process parameters on the microstructure of the resulting product as well as the influence of a material’s structural descriptors (e.g., size and shape descriptors) on its functional properties. Thus, the overall goal of this project is the derivation of quantitative process-structure and structure-property relationships for slag materials obtained in slag generation, comminution and separation processes. Once such relationships have been established, they can be used for optimizing process parameters. This goal will be achieved in close collaboration with partner groups of SPP 2315 who will generate a broad range of slag materials by varying process parameters and provide image data to us which describe the microstructure of these materials in 2D and 3D. These datasets will serve as basis to achieve the three primary objectives of this project: a) Multidimensional probabilistic characterization of slag materials by descriptor vectors of their morphology, texture and chemical composition, where methods of statistical image analysis supported by machine learning will be used to systematically extract knowledge from large sets of image data about the 3D microstructure of slag materials (WP1). By fitting parametric probability distributions to descriptor vectors extracted from segmented image data, an efficient characterization of slag materials will be achieved by just a few parameters which describe the entire distribution (WP2.1 and WP2.2). b) Predicting the chemical composition of slag materials in 3D using solely CT data, where a recently developed stereological prediction method will be enhanced (WP2.3). c) Quantification of process-structure relationships, where process parameters will be mapped onto the parameters determined in WP2 which characterize the distribution of structural descriptor vectors of slag materials. Analogously, regarding structure-property relationships, parameters characterizing the distribution of structural descriptors will be mapped onto aggregated measures of macroscopic physical properties of slag materials. Depending on the complexity of the input/output data, suitable types of non-linear regression models will be utilized, leading to (easily interpretable) analytical formulas (WP3).
不同领域(包括冶金、层析成像、矿物加工以及数据驱动的分析和建模)的跨学科方法是提高炉渣材料中有价值金属的可回收性所必需的。特别重要的一点是在渣形成过程中对渣结构的调整,以提高潜在下游工艺的性能,这需要对工艺参数与渣结构描述符之间的关系进行详细的定量了解。为此,基于高分辨率层析成像数据的炉渣材料结构表征是必不可少的。它使我们能够量化工艺参数对最终产品微观结构的影响,以及材料的结构描述符(例如,尺寸和形状描述符)对其功能特性的影响。因此,该项目的总体目标是推导出在渣产生、粉碎和分离过程中获得的渣材料的定量过程-结构和结构-性能关系。一旦建立了这样的关系,它们就可以用于优化工艺参数。这一目标将通过与SPP 2315的合作伙伴小组的密切合作来实现,他们将通过不同的工艺参数产生各种各样的炉渣材料,并为我们提供2D和3D图像数据,以描述这些材料的微观结构。这些数据集将作为实现该项目的三个主要目标的基础:a)通过其形态,纹理和化学成分的描述向量对炉渣材料进行多维概率表征,其中将使用机器学习支持的统计图像分析方法系统地从关于炉渣材料三维微观结构的大型图像数据集中提取知识(WP1)。通过将参数概率分布拟合到从分割图像数据中提取的描述向量上,只需几个描述整个分布(WP2.1和WP2.2)的参数就可以实现对炉渣材料的有效表征。b)仅使用CT数据三维预测炉渣材料的化学成分,其中将增强最近开发的立体预测方法(WP2.3)。c)工艺-结构关系的量化,其中工艺参数将映射到表征炉渣材料结构描述符向量分布的WP2中确定的参数。类似地,关于结构-性能关系,表征结构描述符分布的参数将被映射到炉渣材料宏观物理性能的汇总措施上。根据输入/输出数据的复杂性,将使用适当类型的非线性回归模型,从而得出(易于解释的)分析公式(WP3)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Volker Schmidt其他文献

Professor Dr. Volker Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Volker Schmidt', 18)}}的其他基金

Statistical analysis and modeling of root measures for the description of spatiotemporal root patterns, using experimental and simulated image data gained by X-ray CT and root architecture models
使用 X 射线 CT 和根结构模型获得的实验和模拟图像数据,对根测量进行统计分析和建模,以描述时空根模式
  • 批准号:
    426456278
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Parametric representation and stochastic 3D modeling of grain microstructures in polycrystalline materials using random marked tessellations
使用随机标记的镶嵌对多晶材料中的晶粒微观结构进行参数表示和随机 3D 建模
  • 批准号:
    322917577
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastic spatiotemporal analysis of 3D particle systems under shear and statistical validation of numerical DEM simulations
剪切下 3D 粒子系统的随机时空分析以及数值 DEM 模拟的统计验证
  • 批准号:
    258662145
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Stochastic particle models for the quantification of relationships between structural characteristics and mechanical properties to predict particle breakage behaviour
随机颗粒模型,用于量化结构特征和机械性能之间的关系,以预测颗粒破碎行为
  • 批准号:
    238651683
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Stochastic modeling of multidimensional particle properties with parametric copulas for the investigation of microstructure effects on the fractionation of fine particle system
使用参数联结函数对多维颗粒特性进行随机建模,用于研究微观结构对细颗粒系统分级的影响
  • 批准号:
    381447825
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Studentship
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
  • 批准号:
    EP/Y028783/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding conscious and unconscious learning of probabilistic information
理解概率信息的有意识和无意识学习
  • 批准号:
    24K16877
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
  • 批准号:
    24K07723
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
  • 批准号:
    2237138
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RAPID/Collaborative Research: Advancing Probabilistic Fault Displacement Hazard Assessments by Collecting Perishable Data from the 2023 Turkiye Earthquake Sequence
RAPID/合作研究:通过收集 2023 年土耳其地震序列的易腐烂数据推进概率断层位移危险评估
  • 批准号:
    2330152
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
  • 批准号:
    22KJ2747
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了