A Study on Derived Equivalences of Blocks and Shintani Descent in Group Algebras

群代数中分块导出等价及新谷下降的研究

基本信息

  • 批准号:
    16540001
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

In the research of this project, we studied "the abelian defect conjecture" which is one of main problems in representation theory of finite groups. We were concerned with Shintani descent and Glauberman correspondent.1.We have constructed one sided tilting complexes for finite Chevalley groups of small rank, for example, U(3,q^2)、Sp(4,q)、G_2(q). We could construct Splendid tilting complexes which coincide with these complexes as one side complexes and studied perfect isometries between character rings induced by them.2.The situations described in 1 can be considered problems of derived category version of "Glauberman correspondent". We have studied solvable group case and obtain some generalization of results by Harris and Linckelmann. And we clarify the strategy raised by Rouquier in this setting.3.We also worked on a problem giving quiver presentations for various types of 5-Sylow normalizers of rank 2 to apply for constructing tilting complexes of some finite Chevalley groups, for example, ^2F_4(q) of which 5-Sylow normalizer is of 4S_4-type.
在本项目的研究中,我们研究了有限群表示论中的主要问题之一“阿贝尔亏损猜想”。1.我们构造了小秩有限Chevalley群的单侧倾斜复形,例如U(3,q^2),Sp(4,q),G_2(q).我们可以构造与这些复形重合的Splendid倾斜复形作为单侧复形,并研究由它们诱导的特征标环之间的完全等距性。2.[1]中描述的情形可以认为是“Glauberman对应”的导出范畴版本问题。研究了可解群的情形,得到了Harris和Linkelmann的一些结果的推广. 3.我们还研究了秩为2的各种类型的5-Sylow正规化子在构造某些有限Chevalley群的倾斜复形中的应用问题,例如,^2F_4(q),其中的5-Sylow正规化子是4S_4-型的.

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a theorem of Mislin on cohomology isomorphism and control of fusion
论Mislin上同调同构定理及融合控制
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高垣忠一朗;春日井敏之編著;梅野正信;T.Okuyama
  • 通讯作者:
    T.Okuyama
Subspaces given by a projective Randers changedeals in regular local rings
投影 Randers 给出的子空间改变了常规局部环中的值
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.H.Keum;K.Oguiso;D.-θ.Zhang;K.Oguiso;M.Kitayama
  • 通讯作者:
    M.Kitayama
Gorenstein graded rings associated to ideals
Gorenstein 对与理想相关的戒指进行分级
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Goto;S.Goto
  • 通讯作者:
    S.Goto
Infinitesimal holomorphically projectice transformation on tnagent bundles with complete lift
具有完全升力的tnagent丛上的无穷小全纯投影变换
Hypersurfaces given by a projective Randers change
由投影 Randers 变化给出的超曲面
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKUYAMA Tetsuro其他文献

OKUYAMA Tetsuro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKUYAMA Tetsuro', 18)}}的其他基金

Studies on fusion systems and cohomology of finite groups
有限群的融合系统和上同调研究
  • 批准号:
    20540001
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Glauberman-Watanabe Correspondence and Derived Equivalence of Blocks
格劳伯曼-渡边对应及块的导出等价性研究
  • 批准号:
    18540004
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constructions of Tilting Complexes and Relative Projective Covers in Representation Theory
表示论中倾斜复形和相对射影覆盖的构造
  • 批准号:
    12640002
  • 财政年份:
    2000
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Broue's Conjecture in Representation Theory of Finite Groups
有限群表示论中布劳猜想的研究
  • 批准号:
    10640001
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Integrable derivations and Hochschild cohomology of block algebras of finite groups
有限群块代数的可积导数和Hochschild上同调
  • 批准号:
    EP/M02525X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Research Grant
Structure of the derived categories of block algebras with non-commutative defect groups
具有非交换缺陷群的分块代数的派生范畴的结构
  • 批准号:
    18540031
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了