Integrable derivations and Hochschild cohomology of block algebras of finite groups
有限群块代数的可积导数和Hochschild上同调
基本信息
- 批准号:EP/M02525X/1
- 负责人:
- 金额:$ 43.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The product rule of the all familiar operation of taking derivatives of real valued functions has a plethora of generalisations and applications in algebra. It leads to the notion of derivations of algebras - theseare linear endomorphisms of an algebra satifying the product rule. They represent the classes ofthe first Hochschild cohomology of an algebra. The first Hochschild cohomology of an algebraturns out to be a Lie algebra, and more precisely, a restricted Lie algebra if the underlyingbase ring is a field of positive characteristic. The (restricted) Lie algebra structure extends toall positive degrees in Hochschild cohomology - this goes back to pioneering work of Gerstenhaberon defornations of algebras.Modular representation theory of finite groups seeks to understand the connections betweenthe structure of finite groups and the associated group algebras. Many of the conjectures that drivethis area are - to date mysterious - numerical coincidences relating invariants of finitegroup algebras to invariants of the underlying groups. The sophisticated cohomological technology hinted at in the previous paragraph is expected to yield some insight regarding thesecoincidences, and the present proposal puts the focus on some precise and unexploredinvariance properties of certain groups of integrable derivations under Morita, derived, or stable equivalences between indecomposable algebra factors of finite group algebras, their character theory, their automorphism groups, and the local structure of finite groups.
我们所熟悉的实值函数求导运算的乘积法则在代数中有大量的推广和应用。它引出了代数的导数的概念——代数的线性自同态满足乘积法则。它们表示代数的第一Hochschild上同的类。一个代数的第一个Hochschild上同调被证明是一个李代数,更准确地说,如果下基环是一个正特征域,则是一个受限李代数。(受限的)李代数结构在Hochschild上同调中扩展到所有正度——这可以追溯到Gerstenhaberon代数变形的开创性工作。有限群的模表示理论试图理解有限群的结构和相关群代数之间的联系。推动这一领域的许多猜想——迄今为止是神秘的——是有限群代数的不变量与底层群的不变量之间的数值巧合。上一段所暗示的复杂的上同调技术有望对这些巧合产生一些见解,而本建议将重点放在有限群代数的不可分解代数因子之间的Morita,导出或稳定等价下的某些可积导数群的一些精确和未探索的不变性,它们的特征理论,它们的自同构群,以及有限群的局部结构。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weight conjectures for fusion systems
融合系统的重量猜想
- DOI:10.1016/j.aim.2019.106825
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Kessar, Radha;Linckelmann, Markus;Lynd, Justin;Semeraro, Jason
- 通讯作者:Semeraro, Jason
The Picard Group of an Order and Külshammer Reduction
Picard 阶群和 Külshammer 归约
- DOI:10.1007/s10468-020-09957-x
- 发表时间:2020
- 期刊:
- 影响因子:0.6
- 作者:Eisele F
- 通讯作者:Eisele F
A counterexample to the first Zassenhaus conjecture
第一个扎森豪斯猜想的反例
- DOI:10.1016/j.aim.2018.10.004
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Eisele F
- 通讯作者:Eisele F
On Picard groups of blocks of finite groups
关于有限群块的皮卡德群
- DOI:10.1016/j.jalgebra.2019.02.045
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:Boltje R
- 通讯作者:Boltje R
On the BV structure of the Hochschild cohomology of finite group algebras
- DOI:10.2140/pjm.2021.313.1
- 发表时间:2020-05
- 期刊:
- 影响因子:0.6
- 作者:D. Benson;R. Kessar;M. Linckelmann
- 通讯作者:D. Benson;R. Kessar;M. Linckelmann
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Linckelmann其他文献
On blocks of strongly p-solvable groups
- DOI:
10.1007/s00013-006-1826-3 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Radha Kessar;Markus Linckelmann - 通讯作者:
Markus Linckelmann
Variations sur les blocs a groupes de defaut cycliques
默认循环集团的变体
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Markus Linckelmann - 通讯作者:
Markus Linckelmann
The operad of Latin hypercubes
拉丁超立方运算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Markus Linckelmann - 通讯作者:
Markus Linckelmann
A block theoretic proof of Thompson’s $$A\times B$$ -lemma
- DOI:
10.1007/s00013-021-01638-5 - 发表时间:
2021-08-23 - 期刊:
- 影响因子:0.500
- 作者:
Radha Kessar;Markus Linckelmann - 通讯作者:
Markus Linckelmann
A version of Alperinʼs weight conjecture for finite category algebras
- DOI:
10.1016/j.jalgebra.2013.02.010 - 发表时间:
2014-01-15 - 期刊:
- 影响因子:
- 作者:
Markus Linckelmann - 通讯作者:
Markus Linckelmann
Markus Linckelmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Linckelmann', 18)}}的其他基金
The Lie algebra of derivations of a block of a finite group
有限群块导数的李代数
- 批准号:
EP/X035328/1 - 财政年份:2023
- 资助金额:
$ 43.54万 - 项目类别:
Research Grant
Representations and cohomology of algebras and categories
代数和范畴的表示和上同调
- 批准号:
0400951 - 财政年份:2004
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
相似海外基金
The Lie algebra of derivations of a block of a finite group
有限群块导数的李代数
- 批准号:
EP/X035328/1 - 财政年份:2023
- 资助金额:
$ 43.54万 - 项目类别:
Research Grant
CAREER: Differential Operators and p-Derivations in Commutative Algebra
职业:交换代数中的微分算子和 p 导数
- 批准号:
2044833 - 财政年份:2021
- 资助金额:
$ 43.54万 - 项目类别:
Continuing Grant
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2021
- 资助金额:
$ 43.54万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2020
- 资助金额:
$ 43.54万 - 项目类别:
Discovery Grants Program - Individual
A usage-based approach to understanding L2 learners' knowledge of English affixes
基于使用的方法来理解 L2 学习者的英语词缀知识
- 批准号:
20K00898 - 财政年份:2020
- 资助金额:
$ 43.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Tracial Derivations and Distributions
非迹推导和分布
- 批准号:
1856683 - 财政年份:2019
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2019
- 资助金额:
$ 43.54万 - 项目类别:
Discovery Grants Program - Individual
Studies on Local Cohomology, Derivations, Integral Dependence, and Blowup Algebras
局部上同调、导数、积分相关性和爆炸代数的研究
- 批准号:
1902033 - 财政年份:2019
- 资助金额:
$ 43.54万 - 项目类别:
Standard Grant














{{item.name}}会员




