Study of Vector Bundles on Manifolds
流形上向量丛的研究
基本信息
- 批准号:16540027
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied splitting problem of rank two vector bundles on n-dimensional projective space P^n ( n ≧ 4 ) defined over an algebraically closed field k ( p = chark > 0 ) and obtained the following.1) A study of deformation of Bogomolov decomposition : Let E be a rank two vector bundle on P^4 satisfying c_1^2-4c_2 ≧ 0 ( c_1 being the i-th Chern number of E ). Let X be a determinantal surface associated to E and Z, Z^* divisors on X associated to E. In addition, let us denote by E^<(q)> | X the inverse image of the vector bundle E | X where F is the Frobenius morphism of degree q = p^n on X. Then we see that E^<(q)> | X ∈ H^1(X, O(-q(Z + Z^*)) and any deformation G ∈ H^1(X, O(-q(Z + Z^*)) of E^<(q)> | X is unstable in the sense of Bogomolov. G has the following Bogomolov decomposition : 0→O( qC+rZ )→G→I cross product O((2q-r)Z)) →0.Theorem : E is a direct sum of line bundles if and only if r ≧ q for large q.2) Study of stability of direct images of vector bundles by Frobenius morphisms : Let X be a nonsingular projective surface defined over an algebraically closed field k ( p = chark > 0) and F the Frobenius morphism of X. As for stability of direct images of vector bundles by Frobenius morphisms, we obtained the following.Theorem : Let X be a nonsingular projective surface and H a numerically positive line bundle on X. Assume that Ω_x^1 is semi-stable with respect to H and K_xH > 0. Then for any line bundle L on X, the direct image F_*(L) is semi-stable with respect H. In particular, if X is a nonsingular minimal surface of general type whose Ω_x^1 is semi-stable with respect to K_x, then for any line bundle L, the direct image F_*(L) is semi-stable with respect K_x. Further let X be a nonsingular projective surface such that K_x is numerically trivial and Ω_x^1 is semi-stable with respect to a numerically positive line bundle H on X. Then for any line bundle L, we see that F_*(L) is semi-stable with respect H.
研究了代数闭域k上n维射影空间P ^n(n ≠ 4)上秩2向量丛的分裂问题(p = chark> 0),得到了如下结果:1)Bogomolov分解的变形研究:设E是P^4上的秩二向量丛,满足c_1^2 - 4c_2 <$0(c_1是E的第i个Chern数).设X是一个与E和Z相关联的行列式曲面,Z ^* 是X上与E相关联的因子。此外,让我们用E ^<(q)>表示|X是向量丛E的逆像|其中F是X上次数为q = p ^n的Frobenius态射。然后我们看到E ^<(q)>| X ∈ H^1(X,O(-q(Z + Z ^*))和E ^<(q)>的任意变形G ∈ H^1(X,O(-q(Z + Z ^*))|X在博戈莫洛夫意义上是不稳定的。G具有以下Bogomolov分解:0 → O(qC + rZ)→ G → I叉积O((2q-r)Z))→ 0。定理:E是线丛的直和当且仅当r ≥ q(对于大q)。2)用Frobenius态射研究向量丛直接像的稳定性:设X是定义在代数闭域k(p = chark> 0)上的非奇异射影曲面,F是X的Frobenius态射.定理:设X为非奇异射影曲面,H为X上的数值正定线丛,则X上的正向线丛的正像是一个正的正像。假设Ω_x^1关于H是半稳定的,且K_xH> 0。则对X上的任意线丛L,其直像F *(L)关于H是半稳定的。特别地,如果X是一般型的非奇异极小曲面,其Ω x ^1关于K x是半稳定的,则对任意线丛L,直像F *(L)关于K x是半稳定的.进一步设X是一个非奇异射影曲面,使得K_x在数值上是平凡的,Ω_x^1关于X上的一个数值上为正数的线丛H是半稳定的。则对任意线丛L,我们看到F_*(L)关于H是半稳定的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUMIHIRO Hideyasu其他文献
SUMIHIRO Hideyasu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUMIHIRO Hideyasu', 18)}}的其他基金
Study of vector bundles on algebraic varieties
代数簇向量丛的研究
- 批准号:
19540034 - 财政年份:2007
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vector Bundles on Manifolds
流形上的向量束
- 批准号:
13640026 - 财政年份:2001
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Intersection Theory on Singular Varieties
奇异簇的代数交集理论
- 批准号:
09640041 - 财政年份:1997
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
VECTOR BUNDLES ON MANIFOLDS
流形上的矢量束
- 批准号:
08454007 - 财政年份:1996
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
VECTOR BUNDLES ON MANIFOLDS
流形上的矢量束
- 批准号:
06640054 - 财政年份:1994
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Positive Vector Bundles in Combinatorics
组合数学中的正向量束
- 批准号:
2246518 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Moduli Spaces and Vector Bundles, New trends
模空间和向量丛,新趋势
- 批准号:
2203287 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
- 批准号:
558713-2021 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Postgraduate Scholarships - Doctoral
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Verifying Fujita's Conjecture for Toric Vector Bundles
验证藤田关于环面向量束的猜想
- 批准号:
546852-2020 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Postgraduate Scholarships - Doctoral
Geometry of Fano varieties and vector bundles
Fano 簇和向量丛的几何
- 批准号:
21K20316 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
- 批准号:
558713-2021 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Postgraduate Scholarships - Doctoral
Verifying Fujita's Conjecture for Toric Vector Bundles
验证藤田关于环面向量束的猜想
- 批准号:
546852-2020 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Postgraduate Scholarships - Doctoral
Toric vector bundles: Stability, Cohomology, and Applications.
环面向量丛:稳定性、上同调和应用。
- 批准号:
EP/T018836/1 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Fellowship
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual