VECTOR BUNDLES ON MANIFOLDS

流形上的矢量束

基本信息

  • 批准号:
    08454007
  • 负责人:
  • 金额:
    $ 3.01万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

In this project, we studied vector bundles on manifolds from the following various points of view : 1)algebraic geometric method, 2)algebraic analytic method, 3)number theoretic method. In 1), we obtained (1) a necessary and sufficient condition for a rank 2 bundle on projective space P^n (n*4) to split into line bundles which gives us a new approach to important conjectures concerning splitting of vector bundles on P^n, (2) we classified Non-projective Moishezon compactifications (X,Y) of affine C^3 space by clarifing numerically effectiveness of the boundary divisor Y and moreover, showed an equivalence between the Stein ess of a C^1- fiber space over a non-Stein manifold S and the triviality of certain rank 2 bundle on S., (3) we proved under some conditions on the first Chern class, the rationality of the moduli of bundles on surfaces with elliptic curves as fibers and have determined the Picard group and Albanese map of the moduli of bundles on elliptic surfaces. In 2), we studied … More (1) heighest weight modules of semi-simple Lie algebras, especially those corresponding to compact Hermitian symmetric spaces, (2) we have introduced the definition of Radon transformation on Flag manifolds of general type and founed usefulness of bundles to study the Radon transformation, (3) we got a duality concerning generalized hypergeometric functions by using the intersection theory on twisted cohomology group and the exterior products. In 3), (1) we gave an expression by integrals in terms of their Fourier coefficients of the L-functions which are liftings of cusp forms with haif integer weights to the modular forms on orthogonal groups and proved the meromorphic continuation and the functional equation under some technical conditions which can be viewed as a generalization of Kohnen-Skoruppa's result on quadratic Siegel cusp forms, (2) we showed an categorical equivalence between the category of p-adic Galoi representations over local fields with positive characteristic and the category of etale differential modules with Frobenius map and in particular, the ones whose representation of inertial group factors through finite representations correspond to overconvergent modules, (3) investigated sheaficatin of p-adic Hodge theory and their relativeness, which are analogue to Riemann-Hilbert correspondence in the case of complex manifolds. Less
在这个项目中,我们从以下几个方面研究了流形上的向量丛:1)代数几何方法,2)代数分析方法,3)数论方法。在[1]中,我们得到了(1)射影空间P^n(n*4)上秩为2的丛分裂为线丛的一个充要条件,这为研究P^n上向量丛分裂的重要问题提供了一个新的途径,(2)通过阐明边界因子Y的数值有效性,对仿射C^3空间的非射影Moishezon紧化(X,Y)进行了分类,证明了非Stein流形S上C^1-纤维空间的Stein ess与S上某个秩为2的丛的平凡性之间的等价性,(3)在第一类Chern类上,在一定条件下证明了以椭圆曲线为纤维的曲面上丛的模的合理性,并确定了椭圆曲面上丛的模的Picard群和Albanese映射.(2)我们研究 ...更多信息 (1)(2)在一般类型的Flag流形上引入了Radon变换的定义,发现了用丛来研究Radon变换的有效性;(3)利用扭上同调群的交理论和外积,得到了广义超几何函数的一个对偶.在3)中,(1)给出了L-函数的Fourier系数积分表达式,并在一定条件下证明了L-函数的亚纯延拓和函数方程,它是Kohnen-Skoruppa关于二次Siegel尖形的结果的推广;(2)证明了局部域上具有正特征的p-adic Galoi表示范畴与具有Frobenius映射的标准微分模范畴,特别是惯性群因子的有限表示对应于过收敛模范畴之间的范畴等价,(3)研究了p-adic Hodge理论的层化及其相关性,它们类似于复流形上的Riemann-Hilbert对应。少

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Yoshioka: "Betti numbers of moduli of stable sheaves on some surfaces" Nucl.Phys.B (Proc.Suppl.). 46. 263-268 (1996)
K.Yoshioka:“某些表面上稳定滑轮模量的贝蒂数”Nucl.Phys.B(Proc.Suppl.)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Matsumoto: "Duality for Hypergeometric Functions and Invariant Gauss-Manin Systems" Compositio Math.
K.Matsumoto:“超几何函数的对偶性和不变高斯-马宁系统”复合数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Tsuzuki: "The local index and the Swan conductor" Compositio Math.
N.Tsuzuki:“本地索引和天鹅指挥”合成数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Yoshioka: "The Picard group of the moduli space of stable sleaces on a ruled surface" J. Math. Kyoto Univ.36. 279-309 (1996)
K. Yoshioka:“直纹面上稳定槽模空间的皮卡德群”J. Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Yoshioka: "Chamber structure of polarizations and the mocluli of stable sheaves a suled susface" Internat. J. Math.7. 411-431 (1996)
K. Yoshioka:“极化室结构和稳定滑轮的分子构成了表面”Internat。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUMIHIRO Hideyasu其他文献

SUMIHIRO Hideyasu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUMIHIRO Hideyasu', 18)}}的其他基金

Study of vector bundles on algebraic varieties
代数簇向量丛的研究
  • 批准号:
    19540034
  • 财政年份:
    2007
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Vector Bundles on Manifolds
流形上向量丛的研究
  • 批准号:
    16540027
  • 财政年份:
    2004
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vector Bundles on Manifolds
流形上的向量束
  • 批准号:
    13640026
  • 财政年份:
    2001
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic Intersection Theory on Singular Varieties
奇异簇的代数交集理论
  • 批准号:
    09640041
  • 财政年份:
    1997
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
VECTOR BUNDLES ON MANIFOLDS
流形上的矢量束
  • 批准号:
    06640054
  • 财政年份:
    1994
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Research Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
  • 批准号:
    2338485
  • 财政年份:
    2024
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Continuing Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Standard Grant
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
  • 批准号:
    2304840
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Standard Grant
Moduli spaces of Galois representations
伽罗瓦表示的模空间
  • 批准号:
    2302619
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Describing Compactifications of Moduli Spaces of Varieties and Pairs.
LEAPS-MPS:描述簇和对模空间的紧化。
  • 批准号:
    2316749
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Complex dynamics via tropical moduli spaces
通过热带模空间的复杂动力学
  • 批准号:
    EP/X026612/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Research Grant
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
  • 批准号:
    2236705
  • 财政年份:
    2023
  • 资助金额:
    $ 3.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了