Vector Bundles on Manifolds
流形上的向量束
基本信息
- 批准号:13640026
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied the splitting problem of rank two vector bundles on projective space P^n(n 【greater than or equal】4) and obtained the following.1)Cohomological criterion : Theorem Let E be a rank two vector bundle on P^n(n【greater than or equal】4), P a 4 or 5-dimensional linear subspace of P^n and let ^^-E = E|P be the restriction of F to P. Then E is a direct sum of line bundles if and only if H^1 (P, End(^^-E)) = 0. Hence it implies that we can reduce the splitting problem in zero characteristic to the one in positive characteristic.2)Kodaira vanishing theorem and geometric structures of determinantal subvarieties in positive characteristic : Theorem Let X be a non-singular projective variety defined over an algebraically closed field of positive characterristic and L a positive ample line bundle on X. Then there exists the following inequality : dim H^1 (X, L^<-1>)【less than or equal】 dimH^1(X, Ο_X). Theorem Let X be a determinantal subvariety associated to E on P ^n in positive characteristic. Then we have H^1(X, Ο_X, ) = H^1(X,Ω^1_X ) = 0.3)A splitting theorem for topologically trivial vector bundles (n = 4) : A rank two vector bundle E is called topologically trivial if c_1 =α+β, c_2=α・β (∃α,β∈Z). Theorem If α【greater than or equal】((-1+√<4β-3>)/2)β, then E is a direct sum of line bundles. In particular ; if 1【less than or equal】β【less than or equal】3, then E splits into line bundles.4)A splitting theorem via Frobenius morphism (n = 4) : Let F be the Frobenius morphism with the exponent q = p^n. Theorem Assume that c^2_1-4c_2 > 0. Then we have the following, a)E|X is Bogomolov's unstable. b)E is a direct sum of line bundles if and only if dim H^1 (X, F* (End(E))【less than or equal】Ο (q^1) for large q.
本文研究了射影空间P^n(n ≥ 4)上的二秩向量丛的分裂问题,得到了如下结果:1)上同调准则:定理设E是P^n(n ≥ 4)上的二秩向量丛,P是P^n的4维或5维线性子空间,设^^-E = E| P是F对P的限制。则E是线丛的直和当且仅当H^1(P,End(^^-E))= 0。因此,这意味着我们可以将零特征的分裂问题归结为正特征的分裂问题。2)科代拉消失定理和正特征的行列式子簇的几何结构:定理设X是定义在正特征的代数闭域上的非奇异射影簇,L是X上的正样本线丛。则存在以下不等式:dimH^1(X,L^<-1>)[小于或等于] dimH^1(X,O_X)。定理设X是P ^n上与E相关联的具有正特征的行列式子簇. 3)拓扑平凡向量丛(n = 4)的一个分裂定理:一个秩为2的向量丛E称为拓扑平凡的,如果c_1 =α+β,c_2=α·β(α,β∈Z)。定理若α[大于或等于]((-1+<$<4β-3>)/2)β,则E是线丛的直和.特别是;若1[小于或等于]β[小于或等于]3,则E分裂成线阵。4)Frobenius态射(n = 4)的分裂定理:设F是指数为q = p^n的Frobenius态射。定理设c^2_1-4c_2 > 0.然后我们有以下,a)E| X是博戈莫洛夫的不稳定状态B)E是线丛的直和当且仅当dim H^1(X,F*(End(E))[小于或等于] O(q^1)对大q。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUMIHIRO Hideyasu其他文献
SUMIHIRO Hideyasu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUMIHIRO Hideyasu', 18)}}的其他基金
Study of vector bundles on algebraic varieties
代数簇向量丛的研究
- 批准号:
19540034 - 财政年份:2007
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Vector Bundles on Manifolds
流形上向量丛的研究
- 批准号:
16540027 - 财政年份:2004
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Intersection Theory on Singular Varieties
奇异簇的代数交集理论
- 批准号:
09640041 - 财政年份:1997
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
VECTOR BUNDLES ON MANIFOLDS
流形上的矢量束
- 批准号:
08454007 - 财政年份:1996
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
VECTOR BUNDLES ON MANIFOLDS
流形上的矢量束
- 批准号:
06640054 - 财政年份:1994
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)