Vector Bundles on Manifolds

流形上的向量束

基本信息

  • 批准号:
    13640026
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

We have studied the splitting problem of rank two vector bundles on projective space P^n(n 【greater than or equal】4) and obtained the following.1)Cohomological criterion : Theorem Let E be a rank two vector bundle on P^n(n【greater than or equal】4), P a 4 or 5-dimensional linear subspace of P^n and let ^^-E = E|P be the restriction of F to P. Then E is a direct sum of line bundles if and only if H^1 (P, End(^^-E)) = 0. Hence it implies that we can reduce the splitting problem in zero characteristic to the one in positive characteristic.2)Kodaira vanishing theorem and geometric structures of determinantal subvarieties in positive characteristic : Theorem Let X be a non-singular projective variety defined over an algebraically closed field of positive characterristic and L a positive ample line bundle on X. Then there exists the following inequality : dim H^1 (X, L^<-1>)【less than or equal】 dimH^1(X, Ο_X). Theorem Let X be a determinantal subvariety associated to E on P ^n in positive characteristic. Then we have H^1(X, Ο_X, ) = H^1(X,Ω^1_X ) = 0.3)A splitting theorem for topologically trivial vector bundles (n = 4) : A rank two vector bundle E is called topologically trivial if c_1 =α+β, c_2=α・β (∃α,β∈Z). Theorem If α【greater than or equal】((-1+√<4β-3>)/2)β, then E is a direct sum of line bundles. In particular ; if 1【less than or equal】β【less than or equal】3, then E splits into line bundles.4)A splitting theorem via Frobenius morphism (n = 4) : Let F be the Frobenius morphism with the exponent q = p^n. Theorem Assume that c^2_1-4c_2 > 0. Then we have the following, a)E|X is Bogomolov's unstable. b)E is a direct sum of line bundles if and only if dim H^1 (X, F* (End(E))【less than or equal】Ο (q^1) for large q.
本文研究了射影空间P^n(n ≥ 4)上的二秩向量丛的分裂问题,得到了如下结果:1)上同调准则:定理设E是P^n(n ≥ 4)上的二秩向量丛,P是P^n的4维或5维线性子空间,设^^-E = E| P是F对P的限制。则E是线丛的直和当且仅当H^1(P,End(^^-E))= 0。因此,这意味着我们可以将零特征的分裂问题归结为正特征的分裂问题。2)科代拉消失定理和正特征的行列式子簇的几何结构:定理设X是定义在正特征的代数闭域上的非奇异射影簇,L是X上的正样本线丛。则存在以下不等式:dimH^1(X,L^<-1>)[小于或等于] dimH^1(X,O_X)。定理设X是P ^n上与E相关联的具有正特征的行列式子簇. 3)拓扑平凡向量丛(n = 4)的一个分裂定理:一个秩为2的向量丛E称为拓扑平凡的,如果c_1 =α+β,c_2=α·β(α,β∈Z)。定理若α[大于或等于]((-1+&lt;$&lt;4β-3&gt;)/2)β,则E是线丛的直和.特别是;若1[小于或等于]β[小于或等于]3,则E分裂成线阵。4)Frobenius态射(n = 4)的分裂定理:设F是指数为q = p^n的Frobenius态射。定理设c^2_1-4c_2 &gt; 0.然后我们有以下,a)E| X是博戈莫洛夫的不稳定状态B)E是线丛的直和当且仅当dim H^1(X,F*(End(E))[小于或等于] O(q^1)对大q。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUMIHIRO Hideyasu其他文献

SUMIHIRO Hideyasu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUMIHIRO Hideyasu', 18)}}的其他基金

Study of vector bundles on algebraic varieties
代数簇向量丛的研究
  • 批准号:
    19540034
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Vector Bundles on Manifolds
流形上向量丛的研究
  • 批准号:
    16540027
  • 财政年份:
    2004
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic Intersection Theory on Singular Varieties
奇异簇的代数交集理论
  • 批准号:
    09640041
  • 财政年份:
    1997
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
VECTOR BUNDLES ON MANIFOLDS
流形上的矢量束
  • 批准号:
    08454007
  • 财政年份:
    1996
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
VECTOR BUNDLES ON MANIFOLDS
流形上的矢量束
  • 批准号:
    06640054
  • 财政年份:
    1994
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了