Study of graded rings associated to ideals and modules
与理想和模相关的分级环的研究
基本信息
- 批准号:16540045
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims at the analysis of several kinds of so-called blow-up algebras associated to ideals and modules, in order to clarify the structure of given ideals and modules as well as that of the base(local or graded) rings. Certain practical criteria for graded rings, say the Rees algebra R(I), the associated graded ring G(I), and the fiber cone F(I), to be Gorenstein, Cohen-Macaulay, and Buchsbaum rings are discovered. Especially, the leading ideal of a complete intersection of height two in a regular local ring is closely studied, which are researches jointly with W. Heinzer and Mee-Kyoung Kim. The head investigator is quite satisfied by these joint works. On the other hand, a joint research with R. Takahashi and N. Matsuoka about quasi-socle ideals in a Gorenstein local ring was started and the theme is now a one of the most attractive studies of the theory of reduction numbers of ideals and the ring-theoretic properties of associated graded rings. The results are already written into two papers(see below) and were submitted to some journal for publication.[1] S. Goto, N. Matsuoka, and R. Takahashi, Quasi-socle ideals in Gorenstein local rings, Preprint 2006[2] S. Goto, F. Hayasaka, and R. Takahashi, On vanishing of certain Ext modules, Preprint 2006
本研究的目的是分析与理想和模相关的几种所谓的blow-up代数,以阐明给定理想和模的结构以及基环(局部环或分次环)的结构。发现了分次环的某些实用准则,如Rees代数R(I)、相关分次环G(I)和纤维锥F(I)是Gorenstein环、Cohen-Macaulay环和Buchsbaum环。特别地,本文研究了正则局部环中高度为2的完全交的首理想,这是与W. Heinzer和Mee-Kyoung Kim首席调查员对这些联合工作相当满意。另一方面,与R. Takahashi和N. Matsuoka关于Gorenstein局部环中的拟socle理想的研究开始了,这一主题现在是理想的约化数理论和相关分次环的环论性质的最有吸引力的研究之一。研究结果已被写入两篇论文(见下文),并提交给一些期刊发表。[1]S.后藤,N. Matsuoka和R.高,Gorenstein局部环中的拟柱理想,预印本2006[2] S。后藤、F. Hayasaka和R. Takahashi,关于某些Ext模块的消失,预印本2006
项目成果
期刊论文数量(47)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Buchsbaum homogeneous algebras with minimal multiplicity
具有最小重数的 Buchsbaum 齐次代数
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:S. Goto;K. Yoshida
- 通讯作者:K. Yoshida
Stanley-Reisner ideals whose powers have finite length cohomolgies
Stanley-Reisner 理想,其幂具有有限长度上同调
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:S. Goto;Y. Takayama
- 通讯作者:Y. Takayama
The singular Riemann-Roch theorem and Hilbert-Kunz functions
奇异黎曼-罗赫定理和希尔伯特-昆茨函数
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:S.Goto;S.Goto;S.Goto;S.Goto;S.Goto;E.J.Elizondo;K.Kurano;S.Goto;S.Goto;E.J.Elizondo;K.Kurano;S.Goto;S.Goto;K.Kurano;S.Goto;S.Goto;S.Goto;S.Goto;S.Goto;S.Goto;S.Goto;S.Goto;K.Kurano
- 通讯作者:K.Kurano
The leading iedeal of a complete intersection of height two
高度二的完全交集的主要理想
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S. Goto;W. Heinzer;Mee-Kyoung Kim
- 通讯作者:Mee-Kyoung Kim
When does the equality I^2=QI hold true in Buchsbaum rings?
等式 I^2=QI 在 Buchsbaum 环中什么时候成立?
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S.Goto;S.Goto;S.Goto
- 通讯作者:S.Goto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GOTO Shiro其他文献
GOTO Shiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GOTO Shiro', 18)}}的其他基金
Commutative algebra - towards a better understanding of non-Cohen-Macaulay rings
交换代数 - 更好地理解非科恩-麦考利环
- 批准号:
22540054 - 财政年份:2010
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of blow-up rings
气胀环的研究
- 批准号:
19540054 - 财政年份:2007
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Blowing-up rings
吹胀环的研究
- 批准号:
13640044 - 财政年份:2001
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of blow-up rings
气胀环的研究
- 批准号:
11640049 - 财政年份:1999
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Rees algebras and form rings
里斯代数和形环的研究
- 批准号:
09640071 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
- 批准号:
DP240101934 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Projects
Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
- 批准号:
2401041 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
- 批准号:
2907441 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Studentship
Interaction of singularities and number theory
奇点与数论的相互作用
- 批准号:
23H01070 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automatic classification and recognition of singularities and its application
奇点自动分类识别及其应用
- 批准号:
23K03123 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
- 批准号:
23K03161 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Fellowship
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant














{{item.name}}会员




