Analysis on the fractal structure of quasi periodic orbits for nonlinear evolution equations
非线性演化方程准周期轨道的分形结构分析
基本信息
- 批准号:16540164
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In our previous research we introduced recurrent dimensions of discrete dynamical systems and we have estimated the upper and lower recurrent dimensions of discrete quasi-periodic orbits to analyze complexity of quasi-periodic solutions given by various types of partial differential equaitions. To investigate various chaotic orbits we also proposed the gaps between the upper and the lower recurrent dimensions as the index parameters, which measure unpredictability levels of the orbits. In this research, classifying the irrational numbers according to the orders of goodness or badness levels of approximation by rational numbers and parametrizing the Diophantine conditions, we say d_0-(D) condition, we estimate the gaps of recurrent dimensions of quasi-periodic orbits by using these orders of the parametrizing Diophantine conditions.These results were announced by the head investigator in the international conference NACA2005 ([1]) and in Discr.Conti.Dyn.Systems ([4]) and in the other journals.Calculating the dimensions gaps of quasi-periodic dynamical systems is to measure their level of complexity and randomness. In [5], [6] the co-investigator Y.Oshima proved some related results for randomness, using probability theory. On the other hand, in [7]-[9] the co-investigator M.Misawa has shown various fundamental results on P.D.E., which will play important and essential roles for investigating chaotic behaviors of nonlinear dynamical models. In [10],[11] the co-investigator T.Sadahiro numerically estimated the fractal tiling structures of various quasi-periodic dynamical systems.
在以往的研究中,我们引入了离散动力系统的循环维数,并估计了离散准周期轨道的上、下循环维数,以分析不同类型偏微分方程拟周期解的复杂性。为了研究各种混沌轨道,我们还提出了上下循环维之间的间隙作为衡量轨道不可预测性水平的指标参数。本文将无理数按照有理数逼近的好坏等级的顺序进行分类,并将Diophantine条件参数化,我们称之为d_0-(D)条件,利用这些参数化Diophantine条件的阶数来估计准周期轨道的循环维数间隙。这些结果由首席研究员在国际会议NACA2005([1])和discr . ci . dyn . systems([1])以及其他期刊上宣布。计算准周期动力系统的维数间隙是为了测量其复杂性和随机性的程度。2010年,合作研究者Y.Oshima用概率论证明了随机性的一些相关结果。另一方面,在[7]-[9]中,共同研究者m.m asawa已经展示了关于P.D.E的各种基本结果,这些结果将对研究非线性动力学模型的混沌行为发挥重要和必不可少的作用。在b[10], b[11]中,共同研究者T.Sadahiro对各种准周期动力系统的分形平铺结构进行了数值估计。
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiple points of tilings associated with Pisot numeration systems
与皮索计数系统相关的多点平铺
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:S. Ito and T;Sadahiro;S. Ito;Mitsuo Kato;Yoshishige Haraoka;Shun Shimomura;Taizo Sadahiro
- 通讯作者:Taizo Sadahiro
Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II : Gaps of dimensions and Diophantine conditions
非线性演化方程准周期解的循环维数 II:维数间隙和丢番图条件
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Yoshino;M.Suwa;Koichiro Naito
- 通讯作者:Koichiro Naito
Existence for a Cauchy-Dirichlet problem for evolutional p-Laplacian system
演化p-拉普拉斯系统柯西-狄利克雷问题的存在性
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Yoshino;M.Suwa;Koichiro Naito;M.Misawa
- 通讯作者:M.Misawa
Existence for a Cauchy-Dirichlet problem for evolutionalp-Laplacian systems
演化p-拉普拉斯系统柯西-狄利克雷问题的存在性
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Ishige;Y.Yagisita;H.Nagai;M asashi. Misawa
- 通讯作者:M asashi. Misawa
The evolution of minimal surfaces with free boundaries in higher dimensions,
在更高维度中具有自由边界的最小表面的演变,
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Abe;M.Furushima;T.Shima;M Otani;M.Misawa;M.Misawa
- 通讯作者:M.Misawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAITO Koichiro其他文献
NAITO Koichiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAITO Koichiro', 18)}}的其他基金
Complexity structure analysis on the orbits of solutions of nonlinear partial differential equations by p-adic analysis
基于p-adic分析的非线性偏微分方程解轨道的复杂结构分析
- 批准号:
24540180 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complexity analysis on orbits of solutions of nonlinear partial differential equations
非线性偏微分方程解轨道的复杂性分析
- 批准号:
21540191 - 财政年份:2009
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on the fractal structure of complexity solutions for nonlinear differential equations
非线性微分方程复杂解的分形结构分析
- 批准号:
18540187 - 财政年份:2006
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on the structure of quasi periodic attractors for nonlinear partial differential equations
非线性偏微分方程拟周期吸引子结构分析
- 批准号:
14540182 - 财政年份:2002
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of dimensional and recursive properties for almost periodic solutions of nonlinear partial differential equations
非线性偏微分方程几乎周期解的维数和递归性质分析
- 批准号:
10640178 - 财政年份:1998
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of almost periodic attractors for nonlinear evolution equations
非线性演化方程的近周期吸引子分析
- 批准号:
08640221 - 财政年份:1996
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
Zero temperature limit approach to phase transitions raised by quasi-periodicity
准周期性引发的相变零温度极限方法
- 批准号:
21K13816 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2020
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
- 批准号:
RGPIN-2018-04510 - 财政年份:2018
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
Critical random systems. Quasi-randomness and quasi-periodicity
临界随机系统。
- 批准号:
371998-2009 - 财政年份:2010
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
Critical random systems. Quasi-randomness and quasi-periodicity
临界随机系统。
- 批准号:
371998-2009 - 财政年份:2009
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
Characterizations of the quasi-periodicity in the quasi-crystal structure
准晶体结构中准周期性的表征
- 批准号:
15540126 - 财政年份:2003
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)