Renormalization and Quasi-Periodicity

重整化和准周期性

基本信息

  • 批准号:
    RGPIN-2018-04510
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Renormalization is one of the most powerful tool in asymptotic analysis of dynamical ***systems. In the proposed research project our aim is to apply the ideology and the tools***of renormalization theory to several important problems related to the asymptotic behaviour ***of quasi-periodic dynamical systems, namely circle diffeomorphisms and circle maps with***singularities. We also plan to address problems related to spectral properties of Schrödinger ***operators with quasi-periodic potentials, and show that two sets of problems are deeply connected. ******One of the problem in our project is to study renormalization behaviour and rigidity theory ***for circle maps with multiple break points. Recently we have constructed a renormalization***scheme for such maps which has strong symmetry properties. One can say that Rauzy***induction, which is usually applied in the case of linear interval exchange transformation, has ***a very non-trivial counterpart in the setting of Möbius transformations. We intend to show that ***the map acting on the parameters of the Möbius transformations has strong hyperbolic***properties. When hyperbolicity is established one can develop a rich rigidity theory using a well***understood tools like distortion estimates etc.******Another problem is connected with a parameter dependence for families of circle maps with ***singularities. It is well known that in the presence of singularities typically the rotation number ***of a map is rational. We plan to prove that one can define a natural conditional probability ***distribution on the "irrational" parameter values which exhibits strong universality properties.***Namely, the asymptotic properties of such probability distributions depend only on the local ***structure of singular points, such as the order of the critical points, or the size of a break. ******We next discuss Schrödinger operators with quasi-periodic potential. It is well-known that in the ***1D case there is a transitionfrom absolutely continuous spectrum to the pure point spectrum when***the coupling constant in front of the potential is increasing. One can consider a natural family of ***Schrödinger operators related to the action-minimizing orbits for 2D Standard-type maps. Such ***orbits are a subject of the Aubry-Mather theory. When action-minimizing orbits belong to KAM ***invariant curves we expect that the corresponding Schrödinger operator will have a positive measure ***component of the absolutely-continuous spectrum. We conjecture that after the destruction of ***invariant curves the spectrum will be pure point. A very difficult but interesting questions arise is the ***case of critical invariant curves. It seems natural to expect a singular continuous spectrum there. ***Notice that the renormalization approach can be applied to the study of invariant curves, critical ***invariant curves, and Cantor-type invariant sets in Aubry-Mather theory, as well as in the analysis***of the corresponding Schrodinger operators.
重正化是动力系统渐近分析中最有力的工具之一。在拟议的研究项目中,我们的目标是应用重整化理论的思想和工具来解决与准周期动力系统的渐近行为有关的几个重要问题,即圆同态和具有 * 奇点的圆映射。我们还计划解决薛定谔 * 运营商的准周期电位的频谱特性相关的问题,并表明,两组问题有很深的联系。** 我们项目中的一个问题是研究具有多个断点的圆映射的重整化行为和刚性理论 *。最近,我们构造了一个重正化 * 计划,这类映射具有强对称性。可以说,通常应用于线性区间交换变换的Rauzy* 归纳法在莫比乌斯变换的情况下有一个非常非平凡的对应物。我们打算证明 *** 映射作用于Möbius变换的参数具有强双曲 *** 性质。当双曲性建立时,可以使用像失真估计等很好理解的工具来开发丰富的刚性理论。另一个问题是与一个参数依赖家庭的圆地图与 * 奇点。众所周知,在存在奇点的情况下,映射的旋转数 * 是有理数。我们计划证明人们可以在“无理”参数值上定义一个自然的条件概率 *** 分布,它具有很强的普适性。也就是说,这种概率分布的渐近性质只取决于奇点的局部 * 结构,如临界点的阶数或突变点的大小。** 我们接下来讨论具有准周期势的薛定谔算子。我们知道,在一维情况下,当势前耦合常数增大时,会出现从绝对连续谱到纯点谱的转变。我们可以考虑一个自然的 * 薛定谔算子族,它与二维标准型映射的作用最小化轨道有关。这种轨道是奥布里-马瑟理论的一个主题。当作用极小化轨道属于KAM * 不变曲线时,我们期望相应的薛定谔算子将具有绝对连续谱的正测度 * 分量。 我们猜想,当 * 不变曲线破坏后,谱将是纯点。一个非常困难但有趣的问题是临界不变曲线的 *** 情况。很自然地,我们会期望那里有一个奇异的连续谱。* 注意,重整化方法可以应用于研究Aubry-Mather理论中的不变曲线,临界 * 不变曲线和Cantor型不变集,以及相应的薛定谔算子的分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khanin, Konstantin其他文献

THE INTERMEDIATE DISORDER REGIME FOR DIRECTED POLYMERS IN DIMENSION 1+1
  • DOI:
    10.1214/13-aop858
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Alberts, Tom;Khanin, Konstantin;Quastel, Jeremy
  • 通讯作者:
    Quastel, Jeremy
C1-RIGIDITY OF CIRCLE MAPS WITH BREAKS FOR ALMOST ALL ROTATION NUMBERS
Robust local Holder rigidity of circle maps with breaks
On Dynamics of Lagrangian Trajectories for Hamilton-Jacobi Equations
Renormalization Horseshoe and Rigidity for Circle Diffeomorphisms with Breaks
  • DOI:
    10.1007/s00220-013-1706-1
  • 发表时间:
    2013-06-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Khanin, Konstantin;Teplinsky, Alexey
  • 通讯作者:
    Teplinsky, Alexey

Khanin, Konstantin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khanin, Konstantin', 18)}}的其他基金

Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    328565-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    328565-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    328565-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    446217-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    328565-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Renormalization for Circle Maps with Singularities and for Directed Polymers
具有奇点的圆图和定向聚合物的重整化
  • 批准号:
    446217-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似国自然基金

使用准勒夫波(Quasi-Love)研究西南极构造分界线
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一类无限维quasi-Toeplitz二次矩阵方程的数值解法及相关理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型单相储能型Quasi-Z源光伏系统双模式运行机理及优化控制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
传输噪声驱动的随机分数阶quasi-geostrophic方程
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
糠醇在铝基M-Quasi-MOF催化剂表面的氢解机理及其增产1,5-戊二醇的选择性调控
  • 批准号:
    22005342
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Quasi 2D-1D耦合水动力洪涝模拟系统的构建及关键技术研究
  • 批准号:
    51809049
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
  • 批准号:
    11426209
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
一体化LC滤波器和Quasi-Z源的间接矩阵变换器及其在交流电机变频调速系统中应用的研究
  • 批准号:
    51477008
  • 批准年份:
    2014
  • 资助金额:
    84.0 万元
  • 项目类别:
    面上项目
基于Quasi-Dyadic纠错码构造身份基公钥加密及身份认证方案研究
  • 批准号:
    61300229
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Tailoring Quasi-Solid-State 'Water-in-Swelling-Clay' Electrolytes for High-Voltage, Durable Aqueous Zinc-Ion Batteries
为高压、耐用的水性锌离子电池定制准固态“膨胀粘土中的水”电解质
  • 批准号:
    2324593
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Self-Organizing Wave Formation in Quasi-2D Shear Turbulence
准二维剪切湍流中的自组织波形成
  • 批准号:
    24K07313
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing commercially viable Quasi-Solid-State Li-S batteries for the Automotive market
为汽车市场开发商业上可行的准固态锂硫电池
  • 批准号:
    10040939
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative R&D
Quasi-Parallel Shocks across the Solar System
整个太阳系的准平行激波
  • 批准号:
    2897122
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Studentship
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
  • 批准号:
    2205973
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Continuing Grant
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
  • 批准号:
    23K17937
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
  • 批准号:
    23K03210
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Potential theoretic approach to quasi-stationary phenomena of Markov processes
马尔可夫过程准平稳现象的潜在理论方法
  • 批准号:
    23KJ0236
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了