Transduction of killing action of killer protein to sensitive yeast strains

将杀伤蛋白的杀伤作用转导至敏感酵母菌株

基本信息

项目摘要

Antagonistic interactions between yeasts by secreted proteinaceous toxins appear to be quite high in natural habitat. To know the molecular mechanisms of yeast killer proteins, we screened a set of Saccharomyces cerevisiae mutants, individually deleted for 4901 yeast genes, for altered sensitivity against purified killer proteins of Kluyveromyces lactis (zymocin).Zymocin, atrimeric(α,β,γ)protein toxin complex, inhibits proliferation of S. cerevisiae cells. We present an analysis of kti6 mutants, which resist exogenous zymocin but are sensitive to intracellular expression of itsinhibitory γ- toxinsubunit, suggesting that KTI6 encodes a factor needed for toxin entry into the cell. Consistent with altered cell surface properties, kti6 cells resist hygromycinB, syringomycinE, and nystatin, antibiotics that require intact membrane potentials or provok emembrane disruption. KTI6 is allelic toI PT1, coding formannosyl-diinositolphospho-ceramide [M(IP)2C] synthase, which produces M(IP)2C, the … More major plasma membrane sphingolipid. kti6 membranes lack M(IP)2C and sphingolipid mutants that have reduced levels of M(IP)2C precursors, including the sphingolipid building block ceramide survive zymocin. Inaddition, kti6/ipt1 cells allow zymocin docking but prevent import of its toxic γ-subunit. Genetic analysis indicates that Kti6 is likely to act upstream of lipid raft proton pump Kti10/Pma1, apreviously identified zymocin sensitivity factor. Insum, M(IP)2C operates in a plasma membrane step that follows recognition of cell wall chitin by zymocin but precedes the involvement of elongator, the potential toxin target.To see the localization of zymocin subunits on the zyocin treated cell, we fractionated the cell lysate. We analyzed the presence of each a, b and g subunits on each fractions by Western-blotting with anti-a, b, g subunit antibody, respectively. a and g subunits were detected in the insoluble fraction of both in cell wall fraction and membrane fraction, respectively. However, β subunit was not detected. These data shows that both a and y subunits invade in the sensitive cell, through membrane. Less
在自然栖息地中,酵母菌之间分泌的蛋白质毒素的拮抗相互作用似乎相当高。为了了解酵母杀伤蛋白的分子机制,我们筛选了一组酿酒酵母(Saccharomycescerevisiae)突变株,这些突变株分别缺失了4901个酵母基因,以改变对纯化的乳酸克鲁维酵母(Kluyveromyceslactis)杀伤蛋白(Zymocin)的敏感性。酿酒酵母细胞我们分析了KTI 6突变体,它们抵抗外源性的zymocin,但对抑制性γ-toxin亚单位的细胞内表达敏感,表明KTI 6编码毒素进入细胞所需的因子。与改变的细胞表面性质一致,kti 6细胞抵抗潮霉素B、红霉素E和制霉菌素,这些抗生素需要完整的膜电位或引起膜破坏。KTI 6与PT 1等位,编码甲甘露糖基-二肌醇磷酸-神经酰胺[M(IP)2C]合酶,其产生M(IP)2C, ...更多信息 主要质膜鞘脂。kti 6膜缺乏M(IP)2C和具有降低水平的M(IP)2C前体的鞘脂突变体,包括鞘脂结构单元神经酰胺存活酶蛋白。此外,kti 6/ipt 1细胞允许酶蛋白对接,但阻止其毒性γ亚基的输入。遗传分析表明,Kti 6可能作用于脂筏质子泵Kti 10/Pma 1的上游,这是一个以前鉴定的酶敏感性因子。总之,M(IP)2C在质膜的步骤,随后的细胞壁几丁质的识别由zymocin,但之前的延伸,潜在的毒素target.To看到zymocin处理的细胞上的zymocin亚基的定位,我们分级的细胞裂解物的参与。我们通过分别用抗a、B、g亚基抗体的Western印迹分析了每个组分上的每个a、B和g亚基的存在。A和G亚基分别在细胞壁部分和膜部分的不溶性部分中检测到。但未检测到β亚基。这些数据表明,a和y亚基都通过膜侵入敏感细胞。少

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M(IP)2C, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin.
M(IP)2C 是主要的酵母质膜鞘脂,控制乳酸克鲁维酵母发酵蛋白的毒性。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zink S*;Mehlgarten C*;Kitamoto HK*;Nagase J;Jablonowski D.
  • 通讯作者:
    Jablonowski D.
キラー蛋白質の精製方法
杀伤蛋白纯化方法
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus
自然界の飛び道具 酵母はどうやって生存競争に勝つか?
酵母,大自然的导弹,如何赢得生存之战?
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T Morita;M Konishi;T Fukuoka;T Imura;HK Kitamoto;D Kitamoto;北本宏子
  • 通讯作者:
    北本宏子
Stark MJR and Schaffrath R.Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin.
Stark MJR 和 Schaffrath R. 甘露糖基二肌醇磷酸神经酰胺是主要的酵母质膜鞘脂,控制乳酸克鲁维酵母发酵蛋白的毒性。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zink S**;Mehlgarten C**;Kitamoto HK**;Nagase J;Jablonowski D;Dickson CR
  • 通讯作者:
    Dickson CR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KITAMOTO Hiroko其他文献

KITAMOTO Hiroko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KITAMOTO Hiroko', 18)}}的其他基金

Mannosylerythritol lipids is associated with filamentous growth and propagation of phyllosphere yeast Pseudozyma antarctica on plant surfaces.
甘露糖赤藓糖醇脂质与植物表面的叶圈酵母 Pseudozyma antarctica 的丝状生长和繁殖有关。
  • 批准号:
    23658083
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Requirement of PKC pathway of target yeast for toxicity of killer protein
目标酵母PKC途径对杀伤蛋白毒性的要求
  • 批准号:
    19580100
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Dissecting bacterial signal transduction
剖析细菌信号转导
  • 批准号:
    DP240102465
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Projects
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
  • 批准号:
    2414497
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Development of tendon/ligament repair modulater using a chemically modified Tetra-PEG gel with signal transduction capability
使用具有信号转导能力的化学改性 Tetra-PEG 凝胶开发肌腱/韧带修复调节剂
  • 批准号:
    23K18325
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
RII Track-4:NSF:Chloroplast retrograde signaling during plant immunity: integrating signal transduction and cellular dynamics
RII Track-4:NSF:植物免疫过程中叶绿体逆行信号传导:整合信号转导和细胞动力学
  • 批准号:
    2329266
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
New insights into extracellular signal transduction
细胞外信号转导的新见解
  • 批准号:
    10566506
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
Regulation of cell fate via signal transduction switching by RNA phase separation
通过 RNA 相分离进行信号转导切换来调节细胞命运
  • 批准号:
    23K05645
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analyses of the molecular mechanism underlying and the functional significance of developmental changes in intracellular signal transduction systems coupled to cardiac AT1 receptors.
分析与心脏 AT1 受体偶联的细胞内信号转导系统发育变化的分子机制和功能意义。
  • 批准号:
    23K06332
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Signal Transduction in the Immune System Conference
免疫系统会议中的信号转导
  • 批准号:
    10683527
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
2023 Microbial Adhesion and Signal Transduction Gordon Research Conferences and Seminar
2023年微生物粘附和信号转导戈登研究会议和研讨会
  • 批准号:
    10666171
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了