Model of false-name-proof negotiation protocol for networked resources and its evaluation
网络资源防伪协商协议模型及其评估
基本信息
- 批准号:17500102
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims to evaluate the market-based fair and efficient protocol, in order to apply it to the allocations of networked resources for its future applications to this domain. In ad hoc networks used in P2P and the decentralized sensor network, for example, individual nodes are owned by different persons and designed based different specifications. In this case, it is necessary to consider the incentives, that is, reward, to transmit data to each node appropriately. The auction protocol is often used for the decision of this reward. However, by using the fake (false-name) node or by conspiring with other nodes, a certain node can acquire the reward illegally in conventional protocols. We theoretically showed that this type of illegal behaviors cannot be prevented even in Vickrey-Clarke-Groves protocol (VCG) in the research period by this grant.We then proposed Reserve-Cost protocol (RC), which is the extension of VCG by introducing the penalty proportional to the number of agen … More ts (nodes) who manage the network route. We also clarified that the RC is false-name proof, that is, the fairness of RC protocol is not influenced by the false-name bids. In addition, we also showed that RC is more efficient than VCG about 60-80% by small-scale network simulation.Moreover, it is necessary for agents to decide, by using some protocols such as auctions, where to receive/send data based on locally available information in an actual network. This corresponds to the selection of an awarder to some degree when multiple bidding agents (this corresponds to servers in this case) are identified as the appropriate for awarders.In this research, we investigated and analyzed the phenomenon occurring when such a resource allocation protocol was used in a large-scale multi-agent system such as network.In this type of systems, many demands like the resource allocation on the network occurs simultaneously from many different agents independently, thus the entire efficiency falls down. We also identified that a little bit of fluctuation can significantly improved the entire performance by avoiding concentration. Less
这项研究旨在评估基于市场的公平和高效协议,以便将其应用于网络资源的分配,以将其未来应用程序应用于该领域。例如,在P2P和分散的传感器网络中使用的临时网络中,单个节点归不同的人所有,并且设计了基于不同的规格。在这种情况下,有必要考虑激励措施,即奖励,以适当地将数据传输到每个节点。拍卖协议通常用于该奖励的决定。但是,通过使用假(错误名称)节点或与其他节点密谋,某个节点可以在常规协议中非法获取奖励。从理论上讲,即使在该授予的研究期间,即使在Vickrey-Clarke-Groves协议(VCG)中也无法预防这种非法行为。然后,我们提出了拟议的储备金协议(RC),这是VCG的扩展,这是通过对Agen More Ts(Nodes)进行惩罚的惩罚来延长VCG。我们还澄清说,RC是错误的名称证明,即RC协议的公平性不受错误名称的影响。此外,我们还表明,通过小规模网络模拟,RC比VCG更有效,大约60-80%。此外,必须通过使用某些协议(例如拍卖)来决定代理商在实际网络中基于本地可用信息接收/发送数据。当多个投标代理(在这种情况下与服务器相对应)是适合奖励者的情况时,这与一定程度上的选择相对应。在这项研究中,我们调查并分析了发生这种资源分配方案时发生的现象,当时在大型多阶段系统中使用了类型的网络,例如这种类型的网络,以下各种各样的网络,这些范围都与此类型的分配相似,在这种类型的范围内,各种各样的范围都在此类型的范围内分配,这些范围与此相似,在此类型的范围内相似,这些范围内的范围是在这种情况下的各种范围。跌倒。我们还确定,通过避免浓度,一些波动可以显着改善整个性能。较少的
项目成果
期刊论文数量(61)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Vickrey Auction and Suppression of Active Adversary Using Incentive-Compatible
使用激励兼容的广义维克里拍卖和抑制主动对手
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Makoto Yokoo;Koutarou Suzuki
- 通讯作者:Koutarou Suzuki
Efficiency and Fairness of Load Distribution on Scale-Free Property
无标度特性荷载分配的效率和公平性
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Kensuke Fukuda;Shin-ya Sato;Osamu Akashi;Kazuhiro Kazama;Toshio Hirotsu;Satoshi Kurihara;Toshiharu Sugawara
- 通讯作者:Toshiharu Sugawara
A Compact Representation Scheme for Coalitional Games in Open Anonymous Environments
开放匿名环境中联盟博弈的紧凑表示方案
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Naoki Ohta;Atsushi Iwasaki;Makoto Yokoo;Kohki Maruono;Vincent Conitzer;Tuomas Sandholm
- 通讯作者:Tuomas Sandholm
多様な興味を持つ専門家と素人が存在する場合の組合せオークション
当有不同兴趣的专家和业余爱好者时进行组合拍卖
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:伊藤 孝行;横尾 真;松原 繁夫
- 通讯作者:松原 繁夫
インターネット上の不正行為に頑健な取引メカニズム : サーベイ
对互联网欺诈具有鲁棒性的交易机制:调查
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:岩崎敦;横尾真;松原繁夫;伊藤孝行
- 通讯作者:伊藤孝行
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUGAWARA Toshiharu其他文献
SUGAWARA Toshiharu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUGAWARA Toshiharu', 18)}}的其他基金
Research on autonomous construction of organizational structures and its effect on the efficiency of assignment problem in a multi-agent system
多Agent系统组织结构自主构建及其对指派问题效率的影响研究
- 批准号:
25280087 - 财政年份:2013
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on norm emergence and its stability in conflict situations of heterogeneous agent network society
异构主体网络社会冲突情境下的规范涌现及其稳定性研究
- 批准号:
23650075 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
On negotiation protocol/strategy exerting capabilities in large-scale multi-agent systems.
关于在大规模多智能体系统中发挥能力的协商协议/策略。
- 批准号:
22300056 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on scalable negotiation protocol for task allocations in large-scale multi-agent systems
大规模多智能体系统中任务分配的可扩展协商协议研究
- 批准号:
19500138 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
基于多代理深度强化学习的服务生态系统治理动态建模和优化关键技术研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于多代理深度强化学习的服务生态系统治理动态建模和优化关键技术研究
- 批准号:62172425
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
考虑限流型能量路由器的微网群故障穿越协调控制研究
- 批准号:51877154
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
分散式储能系统汇聚效应机理及应用研究
- 批准号:51777197
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
云应用协同自适应优化问题的分散求解方法研究
- 批准号:61572116
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
Learning Coordination for Multi-Autonomous Multi-Human (MAMH) Agent Systems with Guaranteed Safety
具有安全保证的多自主多人(MAMH)代理系统的学习协调
- 批准号:
2332210 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
- 批准号:
2339509 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant