Study of transformations of Lie-minimal surfaces
李极小曲面变换的研究
基本信息
- 批准号:17540076
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We dealt with the system of differential equations z_<xx>= bz_y pz and z_<yy> = cz_x qz that defines a projectively minimal surface. The integrability condition of the system isp_y = bc_x + 1/2b_xc - 1/2b_<yy>, q_x = cb_y + 1/2bc_y - 1/2c_<xx>,b_<yyy> - bc_<xy> - 2bq_y - 2b_yc_x - 4qb_y = c_<xxx> - cb_<xy> - 2cp_x -2b_xc_y - 4pc_xThe following six vectorsU = z∧z_x, V = z∧z_y, N_1 = U_y, N_2 = V_x,N_3 = 2z_y∧z_<xy> + bcV, N_4 = 2z_x∧z_y + bcUdefine a frame T = ^t(U, V, N_1, N_2, N_3, N_4) in P^5. It satisfies a Pfaffin equation dT = ωT with a certain 1-form ω. A remarkable property of this frame is that the vectors satisfy the orthogonality condition(U, N_3) = -1, (V, N_4) = 1, (N_1, N_1) = 1, (N_2, N_2) = -1,relative to a certain canonical paring on P5 with the remaining parings being zero. We characterized such a frame. Namely, given a nondegenerate bilinear form {h_<ij>} on P^5, consider a projective frame t = ^t(t_1, …, t_6) that satisfies the orthogonality condition (t_i, t_j) = h_<ij> and denote the Pfaffian equation by dt = ωt. We assume the conditions that dt_1 ≡ 0 (mod t_1, t_2, t_3), dt_2 ≡ 0 (mod t_1, t_2, t_4), and that ω_1^3 and ω_2^4 are linearly independent. Then, we can find a change of the frame: t → gt by a transformation g with gh^tg = h such that the new frame gt satisfies a Pfaffian equation which has the same form as that satisfied by T, provided that the signature of h is (3, 3). Furthermore, when the signature is assumed to be (3, 3), the frame characterizes frames associated with Lie-minimal surfaces.
讨论了定义射影极小曲面的微分方程组z_<xx>= bz_ypz和z_<yy>= cz_xqz。系统isp_y = bc_x + 1/2b_xc - 1/2b_<yy>,q_x = cb_y + 1/2bc_y - 1/2c_<xx>,B_<yyy>- bc_<xy>- 2bq_y - 2b_yc_x - 4qb_y = c_<xxx>- cb_<xy>- 2cp_x-2b_xc_y-4pc_x以下六个向量U = z <$z_x,V = z <$z_y,N_1 = U_y,N_2 = V_x,N_3 = 2z_y <$z_<xy>+ bcV,N_4 = 2z_x <$z_y + bcU定义了P^5中的帧T = ^t(U,V,N_1,N_2,N_3,N_4)。它满足一个Pfaffin方程dT = ωT,具有一定的1-形式ω。该框架的一个显著性质是向量满足正交条件(U,N_3)=-1,(V,N_4)= 1,(N_1,N_1)= 1,(N_2,N_2)=-1,相对于P5上的某个标准对,其余对为零.我们描述了这样一个框架。也就是说,给定P^5上的非退化双线性形式{h_<ij>},考虑满足正交条件(t_i,t_j)= h_的投射框架t = ^t(t_1,...,t_6),<ij>并将Pfiran方程记为dt = ωt。我们假设dt_1 <$0(mod t_1,t_2,t_3),dt_2 <$0(mod t_1,t_2,t_4),ω_1^3和ω_2^4线性无关。然后,我们可以通过具有gh^tg = h的变换g找到框架的变化:t → gt,使得新的框架gt满足与T满足的形式相同的Pfiran方程,条件是h的签名是(3,3)。此外,当签名被假定为(3,3)时,框架表征与Lie极小曲面相关联的框架。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Line congruence and transformation of projective surfaces
线全等与射影面变换
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Arai.;T;佐々木武
- 通讯作者:佐々木武
Interpolation of Markoff transformations on the Fricke surface
Fricke 曲面上马尔科夫变换的插值
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T.Sasaki;M.Yoshida
- 通讯作者:M.Yoshida
Flat fronts in hyperbolic 3-space and their caustics
- DOI:10.2969/jmsj/1180135510
- 发表时间:2005-11
- 期刊:
- 影响因子:0.7
- 作者:M. Kokubu;W. Rossman;M. Umehara;Kotaro Yamada
- 通讯作者:M. Kokubu;W. Rossman;M. Umehara;Kotaro Yamada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SASAKI Takeshi其他文献
SASAKI Takeshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SASAKI Takeshi', 18)}}的其他基金
Bequest and Security in Roman Law
罗马法中的遗赠和担保
- 批准号:
16K16974 - 财政年份:2016
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Principals of Respect for Intentions of Children and Counsel for Children: A Comparative Research in Japan, Germany, and Austria
尊重儿童意愿与儿童辅导的原则:日本、德国、奥地利的比较研究
- 批准号:
25780072 - 财政年份:2013
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mechanisms of abdominal aortic aneurysm formation.
腹主动脉瘤形成的机制。
- 批准号:
23591861 - 财政年份:2011
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characteristics of postural control disturbances in rats with or without brain lesion
有或无脑损伤大鼠姿势控制障碍的特征
- 批准号:
23650330 - 财政年份:2011
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Geometry of affine spheres and projectivelyminimal surfaces
仿射球和射影最小曲面的几何
- 批准号:
22540083 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transition Towards 21stCentury Governing System?: A Comparative Study of Major Democracies on the Political Decision Structure
向21世纪治理体系转型?:主要民主国家政治决策结构比较研究
- 批准号:
21243009 - 财政年份:2009
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The mechanism of atherosclerotic plaque disruption in experimental animal model. The concept of the involvement of cathepsins.
实验动物模型中动脉粥样硬化斑块破坏的机制。
- 批准号:
21700447 - 财政年份:2009
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The mechanism of atherosclerotic plaque disruption in apoE-deficient mice. The concept of the involvement of inflammation
apoE 缺陷小鼠动脉粥样硬化斑块破坏的机制。
- 批准号:
19700366 - 财政年份:2007
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study of systems of differential equations associated with projectively minimal surfaces
与射影最小曲面相关的微分方程组的研究
- 批准号:
19540080 - 财政年份:2007
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanism for human parvovirus B19-induced rheumatoid arthjritis
人细小病毒B19诱导类风湿性关节炎的机制
- 批准号:
16390284 - 财政年份:2004
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)