Study of transformations of Lie-minimal surfaces

李极小曲面变换的研究

基本信息

  • 批准号:
    17540076
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

We dealt with the system of differential equations z_<xx>= bz_y pz and z_<yy> = cz_x qz that defines a projectively minimal surface. The integrability condition of the system isp_y = bc_x + 1/2b_xc - 1/2b_<yy>, q_x = cb_y + 1/2bc_y - 1/2c_<xx>,b_<yyy> - bc_<xy> - 2bq_y - 2b_yc_x - 4qb_y = c_<xxx> - cb_<xy> - 2cp_x -2b_xc_y - 4pc_xThe following six vectorsU = z∧z_x, V = z∧z_y, N_1 = U_y, N_2 = V_x,N_3 = 2z_y∧z_<xy> + bcV, N_4 = 2z_x∧z_y + bcUdefine a frame T = ^t(U, V, N_1, N_2, N_3, N_4) in P^5. It satisfies a Pfaffin equation dT = ωT with a certain 1-form ω. A remarkable property of this frame is that the vectors satisfy the orthogonality condition(U, N_3) = -1, (V, N_4) = 1, (N_1, N_1) = 1, (N_2, N_2) = -1,relative to a certain canonical paring on P5 with the remaining parings being zero. We characterized such a frame. Namely, given a nondegenerate bilinear form {h_<ij>} on P^5, consider a projective frame t = ^t(t_1, …, t_6) that satisfies the orthogonality condition (t_i, t_j) = h_<ij> and denote the Pfaffian equation by dt = ωt. We assume the conditions that dt_1 ≡ 0 (mod t_1, t_2, t_3), dt_2 ≡ 0 (mod t_1, t_2, t_4), and that ω_1^3 and ω_2^4 are linearly independent. Then, we can find a change of the frame: t → gt by a transformation g with gh^tg = h such that the new frame gt satisfies a Pfaffian equation which has the same form as that satisfied by T, provided that the signature of h is (3, 3). Furthermore, when the signature is assumed to be (3, 3), the frame characterizes frames associated with Lie-minimal surfaces.
讨论了定义射影极小曲面的微分方程组z_<xx>= bz_ypz和z_<yy>= cz_xqz。系统isp_y = bc_x + 1/2b_xc - 1/2b_<yy>,q_x = cb_y + 1/2bc_y - 1/2c_<xx>,B_<yyy>- bc_<xy>- 2bq_y - 2b_yc_x - 4qb_y = c_<xxx>- cb_<xy>- 2cp_x-2b_xc_y-4pc_x以下六个向量U = z &lt;$z_x,V = z &lt;$z_y,N_1 = U_y,N_2 = V_x,N_3 = 2z_y &lt;$z_<xy>+ bcV,N_4 = 2z_x &lt;$z_y + bcU定义了P^5中的帧T = ^t(U,V,N_1,N_2,N_3,N_4)。它满足一个Pfaffin方程dT = ωT,具有一定的1-形式ω。该框架的一个显著性质是向量满足正交条件(U,N_3)=-1,(V,N_4)= 1,(N_1,N_1)= 1,(N_2,N_2)=-1,相对于P5上的某个标准对,其余对为零.我们描述了这样一个框架。也就是说,给定P^5上的非退化双线性形式{h_<ij>},考虑满足正交条件(t_i,t_j)= h_的投射框架t = ^t(t_1,...,t_6),<ij>并将Pfiran方程记为dt = ωt。我们假设dt_1 &lt;$0(mod t_1,t_2,t_3),dt_2 &lt;$0(mod t_1,t_2,t_4),ω_1^3和ω_2^4线性无关。然后,我们可以通过具有gh^tg = h的变换g找到框架的变化:t → gt,使得新的框架gt满足与T满足的形式相同的Pfiran方程,条件是h的签名是(3,3)。此外,当签名被假定为(3,3)时,框架表征与Lie极小曲面相关联的框架。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Line congruence and transformation of projective surfaces
线全等与射影面变换
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arai.;T;佐々木武
  • 通讯作者:
    佐々木武
Interpolation of Markoff transformations on the Fricke surface
Fricke 曲面上马尔科夫变换的插值
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Sasaki;M.Yoshida
  • 通讯作者:
    M.Yoshida
Flat fronts in hyperbolic 3-space and their caustics
  • DOI:
    10.2969/jmsj/1180135510
  • 发表时间:
    2005-11
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    M. Kokubu;W. Rossman;M. Umehara;Kotaro Yamada
  • 通讯作者:
    M. Kokubu;W. Rossman;M. Umehara;Kotaro Yamada
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SASAKI Takeshi其他文献

SASAKI Takeshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SASAKI Takeshi', 18)}}的其他基金

Bequest and Security in Roman Law
罗马法中的遗赠和担保
  • 批准号:
    16K16974
  • 财政年份:
    2016
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Principals of Respect for Intentions of Children and Counsel for Children: A Comparative Research in Japan, Germany, and Austria
尊重儿童意愿与儿童辅导的原则:日本、德国、奥地利的比较研究
  • 批准号:
    25780072
  • 财政年份:
    2013
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Mechanisms of abdominal aortic aneurysm formation.
腹主动脉瘤形成的机制。
  • 批准号:
    23591861
  • 财政年份:
    2011
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characteristics of postural control disturbances in rats with or without brain lesion
有或无脑损伤大鼠姿势控制障碍的特征
  • 批准号:
    23650330
  • 财政年份:
    2011
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Geometry of affine spheres and projectivelyminimal surfaces
仿射球和射影最小曲面的几何
  • 批准号:
    22540083
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transition Towards 21stCentury Governing System?: A Comparative Study of Major Democracies on the Political Decision Structure
向21世纪治理体系转型?:主要民主国家政治决策结构比较研究
  • 批准号:
    21243009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
The mechanism of atherosclerotic plaque disruption in experimental animal model. The concept of the involvement of cathepsins.
实验动物模型中动脉粥样硬化斑块破坏的机制。
  • 批准号:
    21700447
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The mechanism of atherosclerotic plaque disruption in apoE-deficient mice. The concept of the involvement of inflammation
apoE 缺陷小鼠动脉粥样硬化斑块破坏的机制。
  • 批准号:
    19700366
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A study of systems of differential equations associated with projectively minimal surfaces
与射影最小曲面相关的微分方程组的研究
  • 批准号:
    19540080
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanism for human parvovirus B19-induced rheumatoid arthjritis
人细小病毒B19诱导类风湿性关节炎的机制
  • 批准号:
    16390284
  • 财政年份:
    2004
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了