Energy of knots and conformal geometry
结的能量和共形几何
基本信息
- 批准号:17540089
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Conformal Geometry of Curves and Surfaces (Joint work with Remi Langevin, who is an investigator abroad):Let x and y be points on a curve C in the 3 dimensional sphere. We can define a complex valued 2-form on ac-t by first identifying the sphere through four points x, x+dx, y, and y+dy with the Riemann sphere CU {∞} and then by taking the cross ratio of the four complex numbers corresponding to the Jour points through a stereographic projection. Let us call it the infinitesimal cross ratio. It is, by definition, invariant under Moebius transformations.The real and the imaginary parts of it can be interpreted as follows.Let S(p,3) denote the set of oriented p dimensional spheres in the 3-sphere. We can give a pseudo-Riemannian structure on it by using Pluecker coordinates. The space CxCΔ can be considered a surface in S(0,3). The real part of the infinitesimal cross ratio is equal to a signed area element of this surface.The space S(0,3) also admits a symplectic structure as the cotangent bundle of 3-sphere. The real part of the infinitesimal cross ratio is also equal to the canonical symplectic form of S(0,3).Topology of planar linkages :The configuration space of the planar mechanism of a robot with $n$ anus each of which has a rotational joint and a fixed end point is studied. Its topological type is given by a Morse theoretical way and a topological way.
曲线和曲面的共形几何(与国外研究员雷米·朗之万共同工作):设x和y是三维球面上曲线C上的点。首先用黎曼球面CU{∞}通过四个点x,x+dx,y,y+dy识别球面,然后通过赤平投影求对应于这四个点的四个复数的交比,我们就可以在Ac-t上定义一个复值2-形式。让我们称它为无穷小交叉比。根据定义,它在Moebius变换下是不变的。它的实部和虚部可以解释如下。设S(p,3)表示三维球面中定向的p维球面的集合。利用Pluecker坐标可以给出其上的伪黎曼结构。空间CxCΔ可以看作是S(0,3)中的一个曲面。无穷小交叉比的实部等于该曲面的符号面积元,S(0,3)空间也允许辛结构为3-球面的余切丛。无穷小交叉比的实部也等于S(0,3)的典范辛形。平面连杆机构的拓扑:研究了一个具有转动关节和固定端点的具有$n$肛门的机器人平面机构的位形空间。用Morse理论和拓扑学方法给出了它的拓扑类型。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A connected sum of knots and Fintushel-Stern knot surgery on 4-manifolds
4 流形上的结连接和 Fintushel-Stern 结手术
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:U.Carow-Watamura;Y.Maeda;S.Watamura;J.O'Hara;M.Akaho
- 通讯作者:M.Akaho
Introduction to homological geometry : II
同调几何简介:II
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J.Sebek;3 co-authors;M.Guest
- 通讯作者:M.Guest
Introduction to homological geometry, I
同调几何导论,I
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:FURUYA;Jun;Martin Guest
- 通讯作者:Martin Guest
The configuration space of planar spidery linkages
平面蜘蛛连杆机构的配置空间
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:D.Dikranjan;A.Giordano Bruno;D.Shakhmatov;Takehiko Yasuda;J. O'Hara
- 通讯作者:J. O'Hara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IMAI Jun其他文献
IMAI Jun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IMAI Jun', 18)}}的其他基金
Masculinity in Service/Knowledge Economy: Basic Research on the Changes of Welfare-Employment Regime
服务/知识经济中的男性气质:福利就业制度变迁的基础研究
- 批准号:
23530641 - 财政年份:2011
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conformal geometry of curves and surfaces and geometric knot theory
曲线曲面共形几何与几何结理论
- 批准号:
21540089 - 财政年份:2009
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conformal geometry and its application to geometric knot theory
共形几何及其在几何结理论中的应用
- 批准号:
19540096 - 财政年份:2007
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the transport pathway of exogenous antigens in cross-presentation by dendritic cells
树突状细胞交叉呈递外源抗原的转运途径分析
- 批准号:
17570164 - 财政年份:2005
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of unified schemes that consist of modeling through controller design using a prior information model
开发统一方案,包括使用先验信息模型通过控制器设计进行建模
- 批准号:
14550451 - 财政年份:2002
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Knot theory and low-dimensional topology
纽结理论和低维拓扑
- 批准号:
RGPIN-2021-04229 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Discovery Grants Program - Individual
String theory, knot theory, thermal QCD and string cosmology
弦理论、纽结理论、热 QCD 和弦宇宙学
- 批准号:
SAPIN-2019-00039 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Subatomic Physics Envelope - Individual
Poly-Time Knot Theory and Quantum Algebra
多时间结理论和量子代数
- 批准号:
RGPIN-2018-04350 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Discovery Grants Program - Individual
Knot theory and computational complexity
结理论和计算复杂性
- 批准号:
572776-2022 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
University Undergraduate Student Research Awards
REU Site: Tiling Theory, Knot Theory, Optimization, Matrix Analysis, and Image Reconstruction
REU 站点:平铺理论、结理论、优化、矩阵分析和图像重建
- 批准号:
2150511 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Knot theory and low-dimensional topology
纽结理论和低维拓扑
- 批准号:
RGPIN-2021-04229 - 财政年份:2021
- 资助金额:
$ 1.79万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Statistical mechanics and knot theory in algebraic combinatorics
职业:代数组合中的统计力学和纽结理论
- 批准号:
2046915 - 财政年份:2021
- 资助金额:
$ 1.79万 - 项目类别:
Continuing Grant
Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
- 批准号:
2054561 - 财政年份:2021
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Construction of Conjugated Macrocycles Based on Knot Theory and the Circularly Polarized Luminescence Behaviors
基于结理论和圆偏振发光行为的共轭大环化合物的构建
- 批准号:
21K18967 - 财政年份:2021
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




