Research on Noncommutative Geometry by deformation quantization
基于变形量化的非交换几何研究
基本信息
- 批准号:17540096
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
By means differential equations, we extend the Moyal product to exponential functions for quadratic functions with coefficients in complex numbers. With respect to the product, we obtain certain anomalous phenomena such as associativity breaking, doubled valuedness of star exponential functions. Further we define a star product, which is an extension of the Moyal product, by using complex symmetric matrices. An infinitesimal transformation of expression of star products, we obtain a nonlinear connection on the space of functions. We show that the extended transformation of orderings gives a transformation of Cayley type for complex matrices, and we give the explicit formula of the transformation for functions. By studying the parallel transform of the phase functions and the amplitude functions, we made a model of branching of star exponential functions. A commutative product of Moyal type gives several interesting functions such as elliptic functions in the space of exponential functi … More ons of quadratic forms. We also show that several identities for these special functions are given by the star product and simple relation of exponential functions.We call the extended Moyal products K-ordering products and we give a geometrical description of these products: we have an algebraic bundle over the space of all nxn complex symmetric matrices, whose fibers consist of Weyl algebras. Intertwines among K-ordering expressions give a flat connection of this bundle. Flat sections of the bundle are regarded as elements of the Weyl algebra. In this framework, we consider several transcendental elements such as star exponential functions. By means of the star exponential functions of linear forms we can define noncommutative Fourier transform and Laplace transform. By these transforms, we consider noncommutative version of elementary functions, e.g., Gamma functions, delta functions. We also study star exponential functions of quadratic forms on this bundle. These exponential functions give a grebe over the base space and the grebe is described by the bundle and the connection. Less
借助于微分方程组,我们将MoYAL积推广到复数系数二次函数的指数函数。对于乘积,我们得到了某些反常现象,如星指数函数的结合性破缺、重值等。进一步,我们利用复对称矩阵定义了一个星积,它是MoYAL积的推广。通过对星积表达式的一个无穷小变换,我们得到了函数空间上的一个非线性联系。我们证明了序的扩展变换给出了复矩阵的Cayley型变换,并给出了函数变换的显式公式。通过研究位相函数和振幅函数的并行变换,建立了星指数函数的分枝模型。一个Moyal型交换积给出了指数函数…空间中的几个有趣的函数,如椭圆函数更多的二次型。我们还证明了这些特殊函数的几个恒等式是由星积和指数函数的简单关系给出的,我们称这些推广的MoYal积为K-序乘积,并给出了这些乘积的几何描述:我们在所有n×n复对称矩阵的空间上有一个代数丛,它的纤维由Weyl代数组成。K-序表达式之间的缠绕给出了这个丛的平坦连接。丛的平截面被认为是Weyl代数的元素。在这个框架中,我们考虑了几个超越元素,如星指数函数。借助于线性形式的星指数函数,我们可以定义非对易的傅里叶变换和拉普拉斯变换。通过这些变换,我们考虑了初等函数的非对易形式,如Gamma函数、Delta函数。我们还研究了该丛上二次型的星指数函数。这些指数函数给出了基空间上的GREBE,并且GREBE由丛和联络来描述。较少
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward Geometric Quantum theory
走向几何量子理论
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Hideki Omori;Yoshiaki Maeda;Naoya Miyazaki;Akira Yoshioka;Naoya Miyazaki;Hideki Omori
- 通讯作者:Hideki Omori
On the integrability of deformation quantized Toda lattice.
关于形变量子化Toda晶格的可积性。
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Y.Maeda;H.Omori;et al.;N.Miyazaki
- 通讯作者:N.Miyazaki
A splitting theorem for proper complex equivocal submanifolds
真复模歧子流形的分裂定理
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Yoshiaki Maeda;Peter Michor;Takushiro Ochiai;Akira Yoshioka;Naoya Miyazaki;Naoyuki Koike;Naoyuki Koike;Naoya Miyazaki;Naoyuki Koike
- 通讯作者:Naoyuki Koike
Geometric objects in an approach to quantum geometry
量子几何方法中的几何对象
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Y.Maeda;H.Omori 他
- 通讯作者:H.Omori 他
From Geometry to Quantum mechanics, In Honor of Hideki Omori
从几何到量子力学,纪念大森秀树
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Yoshiaki Maeda;Peter Michor;Takushiro Ochiai;Akira Yoshioka
- 通讯作者:Akira Yoshioka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOSHIOKA Akira其他文献
YOSHIOKA Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOSHIOKA Akira', 18)}}的其他基金
Noncommutative functional identites with non formal deformation quantization and its application
非形式变形量化的非交换泛函恒等式及其应用
- 批准号:
24540097 - 财政年份:2012
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research on noncommutative functional identities and their Geometry by deformation quantization
基于变形量化的非交换函数恒等式及其几何研究
- 批准号:
21540096 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research on functional identitiesand noncommutative geometry bydeformation quantization
基于变形量子化的函数恒等式和非交换几何研究
- 批准号:
19540103 - 财政年份:2007
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel antithrombotic strategy based on the functional regulation of factor VIII/VWF complex
基于VIII因子/VWF复合物功能调节的新型抗血栓策略
- 批准号:
17390304 - 财政年份:2005
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Application of Deformation Quantization theory to Geometry and Mathematical Physics
形变量子化理论在几何与数学物理中的应用
- 批准号:
13640088 - 财政年份:2001
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DEFORMATION QUANTIZATION AND ITS APPLICATION
变形量化及其应用
- 批准号:
11640095 - 财政年份:1999
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clinical and Biomolecular Studies on Thrombophilia in Children.
儿童血栓形成倾向的临床和生物分子研究。
- 批准号:
10470212 - 财政年份:1998
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study of hypoxic oligodendroglial injury
少突胶质细胞缺氧损伤的研究
- 批准号:
10670611 - 财政年份:1998
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DEFORMATION QUANTIZATION AND NONCOMMUTATIVE GEOMETRY
变形量化和非交换几何
- 批准号:
09640132 - 财政年份:1997
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Immunological, Biological and Molecular Genetic Study on Prenatal Diagnosis of Hemophilia
血友病产前诊断的免疫学、生物学和分子遗传学研究
- 批准号:
63480239 - 财政年份:1988
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Analytic methods in deformation quantization
变形量化中的解析方法
- 批准号:
2425934 - 财政年份:2020
- 资助金额:
$ 1.73万 - 项目类别:
Studentship
Vertex algebras as deformation quantization of jet bundles
顶点代数作为射流束的变形量化
- 批准号:
17K14151 - 财政年份:2017
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Gauge theory on noncommutative Kähler manifolds constructed by deformation quantization
非交换 K 的规范理论
- 批准号:
16K05138 - 财政年份:2016
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application to Geometry of deformation quantization and star exponetials
变形量化和星指数在几何中的应用
- 批准号:
15K04856 - 财政年份:2015
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Noncommutative geometric study of deformation quantization operator algebras
变形量化算子代数的非交换几何研究
- 批准号:
25800058 - 财政年份:2013
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Noncommutative functional identites with non formal deformation quantization and its application
非形式变形量化的非交换泛函恒等式及其应用
- 批准号:
24540097 - 财政年份:2012
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research on noncommutative functional identities and their Geometry by deformation quantization
基于变形量化的非交换函数恒等式及其几何研究
- 批准号:
21540096 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deformation quantization and noncommutative geometry
变形量化和非交换几何
- 批准号:
15540094 - 财政年份:2003
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
International Research Fellowship Program: Deformation Quantization and Analysis on Lie Groups
国际研究奖学金计划:李群的变形量化和分析
- 批准号:
0202132 - 财政年份:2002
- 资助金额:
$ 1.73万 - 项目类别:
Fellowship
RUI: Versal Deformations, Deformation Quantization, Moduli Spaces and Graph Complexes
RUI:Versal 变形、变形量化、模空间和图复合体
- 批准号:
0200669 - 财政年份:2002
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant














{{item.name}}会员




