Analytic methods in deformation quantization
变形量化中的解析方法
基本信息
- 批准号:2425934
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deformation quantization is a mathematical incarnation of the "inverse problem" in quantum mechanics: how can one associate to a classical system a quantum mechanical one which has the given classical system as its large-scale limit? Because of the richer structure in quantum mechanics, one does not normally expect this problem to have a single solution, and it is thus natural to consider the collection of all possible quantizations as a family, united by their common classical limit. Though prompted by physics, this "quantization problem" has produced fascinating questions and discoveries in pure mathematics: Quantum systems naturally give rise to noncommutative algebras (as an observer cannot interact with the system without effecting it) whereas classical systems are commutative and hence can naturally be viewed as functions on a geometric space. If one can realize a noncommutative algebra in mathematics as quantum system, then computing its classical limit yields a geometric object which is likely to still reflect many important properties of the original system. It thus produces a bridge between algebra and geometry which has proved to be very illuminating.Kontsevich's famous work in the 1990s showed that every Poisson structure (I.e mathematical object associated to classical mechanical system) has a quantization and indeed how to understand the family of possible quantizations. This led to an explosion of activity in the area, and while Kontsevich worked in the context of differentiable geometry, the appropriate analogues of his results in algebraic geometry are now understood. This has led to a beautiful recasting of many aspects of geometric representation theory: the celebrated Beilinson-Bernstein localization theorem can be viewed as a statement about the quantization of the cotangent bundle of a flag variety, a symplectic variety which has the property that it is a resolution of singularities of its affinization. Placed in this setting, a theorem which had previously seemed a very unusual property of flag varieties became the motivation for an exciting new area of "symplectic representation theory". All the developments above have focused on "formal" quantizations: deformations where the deformation parameter is formal variable. One can also, however, consider convergence questions, that is, study analytic properties of quantizations as well as formal ones. In the related setting of filtered quantizations, this has been studied via the theory of analytic microlocalization, at least in the case of cotangent bundles of complex manifolds. This project however would seek to study analytic quantization in a number of new contexts: for example, it would already be interesting to develop the theory in the context of an arbitrary symplectic (or more ambitiously Poisson) variety, However, it would equally be natural to investigate analytic techniques in the non-Archimedean setting, that is, in the context of rigid analytic geometry. Here there is a richer array of possibilities in how one can impose convergence requirements. Recent work of Ardakov and others on rigid analytic D-modules, which can be thought of as a kind of filtered quantisation of cotangent bundles as mentioned above, gives evidence that this is a fruitful area of research. One natural goal in seeking to understand these results in the more general context of deformation quantisation would be to understand the localisations of finite W-algebras in the rigid analytic setting, following the work of Dodd-Kremnitzer in the formal setting. This work will fit into EPSRCs areas of interest in Algebra, Geometry and Number theory.
变形量子化是量子力学中“逆问题”的数学化身:如何将一个经典系统与一个以给定的经典系统作为其大尺度极限的量子力学系统联系起来?由于量子力学的结构更丰富,人们通常不期望这个问题有单一的解,因此很自然地将所有可能的量子化的集合视为一个家族,由它们共同的经典极限联合起来。虽然受到物理学的启发,但这个“量子化问题”在纯数学中产生了令人着迷的问题和发现:量子系统自然会产生非交换代数(因为观察者不能与系统相互作用而不影响它),而经典系统是交换的,因此可以自然地被视为几何空间上的函数。如果可以将数学中的非交换代数实现为量子系统,那么计算其经典极限就会产生一个几何对象,该对象可能仍然反映原始系统的许多重要性质。因此,它产生了一个桥梁之间的代数和几何已被证明是非常有启发性的。Kontsevich的著名工作在20世纪90年代表明,每一个泊松结构(即数学对象相关的经典力学系统)有一个量化和实际上如何理解家庭的可能量化。这导致了爆炸的活动在该地区,而Kontsevich工作的背景下,微分几何,适当的类似物,他的结果在代数几何现在的理解。这导致了几何表示论的许多方面的美丽重铸:著名的贝林森-伯恩斯坦局部化定理可以被视为关于旗簇余切丛量子化的陈述,旗簇是一个辛簇,具有这样的性质:它是其仿射奇异性的分解。在这种情况下,一个以前似乎是旗帜品种的一个非常不寻常的性质的定理成为一个令人兴奋的新领域“辛表示论”的动机。上述所有的发展都集中在“形式”量子化:变形参数是形式变量的变形。然而,我们也可以考虑收敛问题,也就是说,研究量子化和形式量子化的分析性质。在过滤量子化的相关设置中,这已经通过解析微局部化理论进行了研究,至少在复流形的余切丛的情况下。然而,这个项目将寻求在一些新的背景下研究分析量子化:例如,在任意辛(或更雄心勃勃的泊松)簇的背景下发展理论已经很有趣了,然而,在非阿基米德设置中研究分析技术也同样很自然,也就是说,在刚性解析几何的背景下。在如何实施趋同要求方面,存在着更丰富的可能性。最近的工作Ardakov和其他刚性解析D-模,这可以被认为是一种过滤量化的余切丛如上所述,证据表明,这是一个富有成果的研究领域。在变形量子化的更一般背景下寻求理解这些结果的一个自然目标是理解有限W-代数在刚性解析环境中的局部化,遵循Dodd-Kremnitzer在形式环境中的工作。这项工作将适合EPSRCs在代数,几何和数论领域的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of methods for determining (non-)uniqueness of deformation path and for guiding deformation of rigid origami
开发确定变形路径(非)唯一性和引导刚性折纸变形的方法
- 批准号:
23K19160 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Studying the Deformation of Tungsten and its Alloys During Mechanical Testing with analysis being performed using EBSD and HR-DIC Methods
研究钨及其合金在机械测试过程中的变形,并使用 EBSD 和 HR-DIC 方法进行分析
- 批准号:
2905629 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Development of non-destructive evaluation methods for the determination of machining deformation of high-performance Ni-based superalloys
高性能镍基高温合金加工变形无损评价方法的开发
- 批准号:
2740615 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Refinement of the three-dimensional analysis of the plastic deformation of rocks: improvement of the pre-existing two methods
岩石塑性变形三维分析的精细化:现有两种方法的改进
- 批准号:
22K03756 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of the methods for evaluating the deformation and strength properties of solid wood and wood-based materials with various defects
实木及各种缺陷人造板变形及强度性能评价方法的建立
- 批准号:
20K06165 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of 3D micro-deformation distribution measurement technique using optical methods
利用光学方法开发3D微变形分布测量技术
- 批准号:
20K04171 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vascular Deformation Mapping (VDM) for Automated, 3D Assessment of Thoracic Aortic Aneurysm
用于胸主动脉瘤自动 3D 评估的血管变形测绘 (VDM)
- 批准号:
10409547 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Deformation Corrected Image Guided Laparoscopic Liver Surgery
变形校正图像引导腹腔镜肝脏手术
- 批准号:
10018895 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Deformation Corrected Image Guided Laparoscopic Liver Surgery
变形校正图像引导腹腔镜肝脏手术
- 批准号:
10240622 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Deformation Corrected Image Guided Laparoscopic Liver Surgery
变形校正图像引导腹腔镜肝脏手术
- 批准号:
10437069 - 财政年份:2019
- 资助金额:
-- - 项目类别:














{{item.name}}会员




