Semiclassical Analysis of Schroedinger equations
薛定谔方程的半经典分析
基本信息
- 批准号:17540141
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main researches during this period are the fallowings.First, in collaboration with J.-F. Bony, T. Ramond and M. Zerzeri, I considered a Hamiltonian with a hyperbolic fixed point and the corresponding incoming and outgoing stable manifolds. We showed, under a generic assumption, that the microlocal solution of the corresponding Schroedinger equation on the outgoing stable manifold (output data) is uniquely determined by that on the incoming stable manifold (input data). Moreover, we succeeded in describing the output data in terms of the input data as Fourier integral operator, whose phase and amplitude are explicitely given by geometrical quantities. These results are written in the preprint "Microlocal kernel of pseudodifferential operators at a hyperbolic fixed point.Second, in collaboration with A. L. Benbernou and A. Martinez, I considered the asymptotic expansion of the width of shape resonances created by a "well in an island". About 20 years ago, Helffer and Sjostrand showed for analytic potentials that it has a classical expansion with an exponentially small prefactor whose rate is given by the Agmon distance from the well to the sea. We conjectured the same result for only smooth potentials.
这一时期的主要研究成果如下:第一,与J. F.博尼,T。Ramond和M. Zerzeri,我考虑了一个双曲不动点和相应的传入和传出稳定流形的哈密顿量。我们表明,在一个通用的假设下,相应的薛定谔方程的微局部解的输出稳定的流形(输出数据)是唯一确定的传入的稳定的流形(输入数据)。此外,我们成功地描述了输出数据的输入数据的傅里叶积分算子,其相位和振幅的几何量显式地给出。这些结果被写在预印本“双曲不动点上伪微分算子的微局部核”中。L. Benbernou和A.马丁内斯,我认为渐近扩展的形状共振的宽度所产生的“一个岛”。大约20年前,Helffer和Sjostrand证明了解析势的经典展开,其前因子是指数小的,其速率由从井到海的Agmon距离给出。我们推测仅对于光滑势也有相同的结果。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Third order semilinear dispersive equations related to deep water waves
与深水波有关的三阶半线性色散方程
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Ohnishi;M.;Tsujimura;M.;Arisawa Mariko;S.Fujiie;S.Fujiie;S.Fujiie;S.Fujiie;S.Fujiie;S.Doi;H.Chihara;S.Fujiie;H.Chihara;S.Doi;H.Chihara
- 通讯作者:H.Chihara
An exact WKB method for 2×2 systems and applications
适用于 2×2 系统和应用的精确 WKB 方法
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Ohnishi;M.;Tsujimura;M.;Arisawa Mariko;S.Fujiie;S.Fujiie
- 通讯作者:S.Fujiie
The initial value problem for a third order dispersive equation on the two dimensional torus
二维环面上三阶色散方程的初值问题
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:藤家 雪朗;千原 浩之
- 通讯作者:千原 浩之
Resonances created by a conical intersection
圆锥形交叉产生的共振
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Ohnishi;M.;Tsujimura;M.;Arisawa Mariko;S.Fujiie
- 通讯作者:S.Fujiie
An exact WKB method for 2x2 systems and applications
适用于 2x2 系统和应用程序的精确 WKB 方法
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Ohnishi;M.;Tsujimura;M.;Arisawa Mariko;S.Fujiie;S.Fujiie;S.Fujiie;S.Fujiie
- 通讯作者:S.Fujiie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIIE Setsuro其他文献
FUJIIE Setsuro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIIE Setsuro', 18)}}的其他基金
Semi-classical analysis of the Schroedinger equations
薛定谔方程的半经典分析
- 批准号:
15K04971 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semi-classical analysis of Schroedinger equations
薛定谔方程的半经典分析
- 批准号:
24540196 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semi-classical Analysis for Schrodinger Equations
薛定谔方程的半经典分析
- 批准号:
21540195 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semi-classical Analysis of Schroedinger Equations
薛定谔方程的半经典分析
- 批准号:
19540195 - 财政年份:2007
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiclassical Analysis of Schrodinger Equations
薛定谔方程的半经典分析
- 批准号:
15540149 - 财政年份:2003
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
The WKB method via homological perturbation theory
基于同调微扰理论的 WKB 方法
- 批准号:
572315-2022 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
University Undergraduate Student Research Awards
On the exact WKB method from a viewpoint of microlocal analysis
从微局部分析的角度谈精确WKB方法
- 批准号:
23540178 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Quantum systems with PT symmetry based on the exact WKB method
基于精确WKB方法的PT对称性量子系统研究
- 批准号:
14540376 - 财政年份:2002
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural analysis of differential equations by the exact WKB method
通过精确 WKB 方法进行微分方程的结构分析
- 批准号:
14340042 - 财政年份:2002
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




