The strategy based on gene expression profiling using microarray for tailor-made treatment in patients with lung cancer
基于基因表达谱的微阵列策略为肺癌患者提供量身定制的治疗
基本信息
- 批准号:17591458
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Purpose Lymph node metastasis and tumor recurrence are major factors associated with poor prognosis in the cancer, but little is known of their molecular mechanisms. The aim of this study was to identify genes differentially expressed between normal and cancerous lung tissues, and to investigate the gene-expression profiles of 100 primary lung cancers to select a set of gene predictors for the clinical features of lung cancer.Experimental Design Gene expression profiles were obtained using an oligonucleotide microarray, and the construction of predictor sets was performed by evaluating the statistical significance of the expression levels of selected genes.Results In the search for candidate genes, 530 genes showed differential expression in adenocarcinoma and 519 genes in squamous cell carcinoma. Ninety-four genes showed a distinct expression pattern exclusively in cancer tissues with lymph-node metastasis and 60 genes showed involvement with tumor recurrence. Using the most suitable set of genes, it was possible to predict the clinical futures of patients with lung cancer. The prediction scoring system yielded 90.9% accuracy for forecasting adenocarcinoma and 91.5% accuracy for squamous cell carcinoma, 71.4% accuracy for forecasting lymph node metastasis and 84.6% accuracy for tumor recurrence in independent cases.Conclusions The gene expression analysis and the combination of statistical analysis successfully distinguished histopathological types and clinical features such as lymph node metastasis and recurrence. The findings of this study show the possibility of subgrouping lung cancer based on the combination of pathological diagnosis and molecular classification.
目的淋巴结转移和肿瘤复发是影响肺癌预后的主要因素,但其分子机制尚不清楚。本研究的目的是寻找肺癌组织和正常肺组织之间差异表达的基因,并对100例肺癌的基因表达谱进行研究,筛选出一组反映肺癌临床特征的基因表达谱。实验设计采用寡核苷酸微阵列技术获得基因表达谱,通过对所选基因表达水平的统计意义进行预测集的构建。结果在候选基因的搜索中,530个基因在腺癌中有差异表达,519个基因在鳞癌中有差异表达。有94个基因仅在有淋巴结转移的癌组织中有明显的表达模式,60个基因与肿瘤复发有关。使用最合适的一组基因,就有可能预测肺癌患者的临床未来。在独立病例中,预测腺癌的准确率为90.9%,预测鳞癌的准确率为91.5%,预测淋巴结转移的准确率为71.4%,预测肿瘤复发的准确率为84.6%。结论基因表达分析和统计学分析相结合成功地区分了组织病理学类型和淋巴结转移、复发等临床特征。本研究结果表明,根据病理诊断和分子分类相结合的方法对肺癌进行亚型是可能的。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prognostic impact of large cell neuroendocrine histology in patients with pathological stage 1a pulmonary non-small cell carcinoma
大细胞神经内分泌组织学对病理1a期肺非小细胞癌患者预后的影响
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Iyoda A;et al.
- 通讯作者:et al.
Cytological findings of pre-invasive bronchial lesions detected by light-induced fluorescence endoscopy in a lung cancer screening system
肺癌筛查系统中光诱导荧光内窥镜检测到的浸润前支气管病变的细胞学结果
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Baba M;Iyoda A;et al.
- 通讯作者:et al.
Pulmonary Large Cell Neuroendocrine Carcinoma.
- DOI:10.3389/pore.2022.1610730
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:Yang, Lan;Fan, Ying;Lu, Hongyang
- 通讯作者:Lu, Hongyang
Prognostic impact of large cell neuroendocrine histology in patients with pathological stage la pulmonary non-small cell carcinoma
大细胞神经内分泌组织学对病理分期1a期肺非小细胞癌患者预后的影响
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Iyoda A;et al.
- 通讯作者:et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IYODA Akira其他文献
IYODA Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IYODA Akira', 18)}}的其他基金
Personalized medicine by gene expression profiling in patients with primary resected lung cancer
通过原发性切除肺癌患者的基因表达谱进行个体化医疗
- 批准号:
15K10272 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prediction of postoperative prognoses by gene expression profiling in patients with primary resected lung cancer
通过基因表达谱预测原发性切除肺癌患者的术后预后
- 批准号:
24592098 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prediction of postoperative recurrences by gene expression profiling in patients with primary resected lung cancer
通过基因表达谱预测原发性切除肺癌患者术后复发
- 批准号:
21591822 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prediction of lymph node metastasis by gene expression profiling in patients with primary resected lung cancer
通过基因表达谱预测原发性切除肺癌患者的淋巴结转移
- 批准号:
19591610 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gene expression profiling in primary lung cancer with oligonucleotide microarray.
使用寡核苷酸微阵列对原发性肺癌进行基因表达谱分析。
- 批准号:
15591467 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
基于标准样品的Microarray与RNA-seq噪声分析与消除
- 批准号:31601085
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
用microarray技术和表达序列标签(EST)技术鉴定Bt水稻对稻田蜘蛛优势种群生存的影响
- 批准号:31272339
- 批准年份:2012
- 资助金额:81.0 万元
- 项目类别:面上项目
相似海外基金
IsoSpark single cell proteomic and transcriptomic system for Keck Microarray Shared Resource (KMSR)
用于 Keck 微阵列共享资源 (KMSR) 的 IsoSpark 单细胞蛋白质组和转录组系统
- 批准号:
10632845 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Implantable Microarray Probe for Real-Time Glutamate and GABA Detection
用于实时谷氨酸和 GABA 检测的植入式微阵列探针
- 批准号:
10761486 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
High-throughput Experimental System Using Implantable Cell-biomaterial Microarray
使用可植入细胞生物材料微阵列的高通量实验系统
- 批准号:
23KK0070 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Novel, Self-Applied MicroArray Patch (MAP) of Zanamivir for Treatment of the Flu
用于治疗流感的新型扎那米韦自用微阵列贴片 (MAP)
- 批准号:
10761086 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Automated digital high-precision, high-throughput tissue microarray (TMA) system
自动化数字高精度、高通量组织微阵列 (TMA) 系统
- 批准号:
508608399 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Major Research Instrumentation
Creation of an innovative cell microarray for non-adheretnc cells which enables to study for long periods of time
为非贴壁细胞创建创新的细胞微阵列,使其能够进行长时间研究
- 批准号:
22K18921 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Rationale polymer design and selection for microarray transdermal peptide delivery
微阵列透皮肽递送的聚合物设计和选择的基本原理
- 批准号:
2739154 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Studentship
Chemical Fingerprints of Cognitive Impairment-related alpha-Synuclein Strains using 3D Small Molecule Microarray and Related Therapeutic Application
使用 3D 小分子微阵列的认知障碍相关 α-突触核蛋白菌株的化学指纹及相关治疗应用
- 批准号:
10360139 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Investigating the Role of N-Type Glycosylation in Protein-Ligand Interactions Using a Unique Commercial Microarray Technology
使用独特的商业微阵列技术研究 N 型糖基化在蛋白质-配体相互作用中的作用
- 批准号:
2493266 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Studentship
Characterizing and optimizing IgE and IgG4 microarray peptide assays for Ara h 2
表征和优化 Ara h 2 的 IgE 和 IgG4 微阵列肽测定
- 批准号:
10289505 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别: