Bayesian Regression Model to Analyze, Predict and Control the Spreading of COVID-19 in Germany with High Spatial Resolution

利用贝叶斯回归模型以高空间分辨率分析、预测和控制德国 COVID-19 的传播

基本信息

项目摘要

Aim of the proposal is to provide a fully data-driven analysis and forecast of spatial temporal dynamics, with an improved spatial resolution that will enable decision-makers to judge the current and predicted dynamics, to assess the reliability and possible variations of the predictions, to plan and adjust regulation to control the outbreak. The model will include explicit factors that model the spreading across regions that will allow visualizing the temporal spreading and the identification of driving factors of the disease. To this end, a fully datadriven Bayesian regression model will be used on two spatial scales. Firstly, on the level of counties (Landkreise), and secondly on the level of regions (~40) inside the county of Osnabrück. In the second phase of the project, Oldenburg will be included as a second high resolution spatial model. The models will be an extension of the established fully Bayesian regression model, initially developed in cooperation with the RKI, and later adapted to COVID-19 (https://covid19-bayesian.fz-juelich.de/), and that runs prediction on the level of counties since August 2020, and operates as a prototype on the finer level since January 2021.
该提案的目的是对时空动态提供完全由数据驱动的分析和预测,提高空间分辨率,使决策者能够判断当前和预测的动态,评估预测的可靠性和可能的变化,规划和调整监管以控制疫情。该模型将包括对跨区域传播进行建模的明确因素,这将允许可视化时间传播并识别疾病的驱动因素。为此,将在两个空间尺度上使用完全由数据驱动的贝叶斯回归模型。首先,在县(Landkreise)一级,其次是在奥斯纳布吕克县内的地区(~40)一级。在该项目的第二阶段,奥尔登堡将作为第二个高分辨率空间模型。该等模型将是已建立的全贝叶斯回归模型的扩展,该模型最初与RKI合作开发,后来适应COVID-19(https://covid19-bayesian.fz-juelich.de/),自二零二零年八月起在县一级进行预测,并自二零二一年一月起在更精细的层面上作为原型运行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Gordon Pipa其他文献

Professor Dr. Gordon Pipa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Gordon Pipa', 18)}}的其他基金

MemDANCE: Memristor-based Dendritic Analog Computing Enhancement
MemDANCE:基于忆阻器的树突模拟计算增强
  • 批准号:
    536022217
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Clustered Coefficient Regression Model-Based Estimators in Small Area Estimation
小区域估计中基于聚类系数回归模型的估计器
  • 批准号:
    2316353
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Regularized Dirichlet-Multinomial Regression Mixture Model with Applications to the Gut Microbiome
正则化狄利克雷多项回归混合模型及其在肠道微生物组中的应用
  • 批准号:
    570145-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multicollinearity Analysis and Variable/Model Selection in Regression
回归中的多重共线性分析和变量/模型选择
  • 批准号:
    21K01431
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
  • 批准号:
    2151651
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
  • 批准号:
    RGPIN-2018-06466
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了