Model predictive motion planning for robot-assisted observation and recording of humanactivities
用于机器人辅助观察和记录人类活动的模型预测运动规划
基本信息
- 批准号:497071854
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Authentic data of human activities are essential in many fields but at the same time difficult and costly to acquire. Data is used, for example, for documentation purposes in medicine, aerospace, and also in ethology for research on human-robot interaction. In machine learning such as deep learning or learning from observation, the quantity and quality of data determine the performance of new approaches. Robotic observationand recording of human activities is a promising way to economically access rare and exclusive data. Nowadays, model predictive control is state of the art for real-time motion planning under the aspects of collision avoidance as well as time and path optimality for robotic manipulators. The research project is therefore dedicated to model predictive motion planning for a seamless recording of human activities and the associated changes to the environment by a robot-guided eye-in-hand camera. The goal is to maximize the information gain accumulated over the entire camera motion by recording from changing perspectives in close proximity to the activity without disturbing the human. With the successful application of model predictive control in robotics, new challenges arise following this objective, both, in terms of collision avoidance under uncertainties of human motion, and systematic development of task-specific cost functions that evaluate the success of the entire spatio-temporal motion with respect to a higher-level overall goal.The methods will be evaluated, both, in detail and collectively in the context of an exemplary application in which a robotic manipulator will reproduce the observed activity using learning from observation.
人类活动的真实数据在许多领域都是必不可少的,但同时又很难获得,而且费用很高。例如,数据用于医学、航空航天以及人类行为学中的人类-机器人交互研究的文档目的。在深度学习或观察学习等机器学习中,数据的数量和质量决定了新方法的性能。机器人观察和记录人类活动是经济地获取稀有和独家数据的一种有前途的方式。目前,模型预测控制在机器人避碰、时间和路径最优等方面的实时运动规划中处于领先地位。因此,该研究项目致力于模型预测运动规划,以便通过机器人引导的手眼相机无缝记录人类活动和环境的相关变化。我们的目标是最大限度地提高信息增益积累在整个摄像机运动记录从变化的角度在接近的活动,而不打扰人。随着模型预测控制在机器人中的成功应用,在这一目标之后出现了新的挑战,无论是在人体运动的不确定性下的碰撞避免方面,还是系统地开发特定于任务的成本函数,该成本函数相对于更高级别的总体目标评估整个时空运动的成功。在示例性应用的上下文中详细地和共同地描述,在该示例性应用中,机器人操纵器将使用从观察中学习来再现观察到的活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Torsten Bertram其他文献
Professor Dr.-Ing. Torsten Bertram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Torsten Bertram', 18)}}的其他基金
Nonlinear model predictive control with Timed-Elastic-Bands
使用定时弹性带的非线性模型预测控制
- 批准号:
318063616 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Control of link-elastic serial kinematic chains with multiple bending planes for safe, dependable and efficient physical human-machine-interaction
控制具有多个弯曲平面的连杆弹性串行运动链,实现安全、可靠、高效的物理人机交互
- 批准号:
289939442 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Bildbasierte Positionsregelung und Schwingungsdämpfung elastischer Roboterarme im Kontext effizienter menschzentrierter Automatisierung
在以人为本的高效自动化背景下,基于图像的弹性机械臂位置控制和振动阻尼
- 批准号:
166387581 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10317899 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Neurobehavioral phenotyping of AD model mice using Motion Sequencing
使用运动测序对 AD 模型小鼠进行神经行为表型分析
- 批准号:
10281230 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10514527 - 财政年份:2021
- 资助金额:
-- - 项目类别:
4D ventricle-valve model risk stratification for planning surgical treatment of ischemic mitral regurgitation
4D 心室瓣膜模型风险分层用于规划缺血性二尖瓣反流的手术治疗
- 批准号:
9922382 - 财政年份:2018
- 资助金额:
-- - 项目类别:
4D ventricle-valve model risk stratification for planning surgical treatment of ischemic mitral regurgitation
4D 心室瓣膜模型风险分层用于规划缺血性二尖瓣反流的手术治疗
- 批准号:
9754718 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Novel Use of Emergent Technologies to Improve Efficiency of Animal Model Research
新兴技术的新用途提高动物模型研究的效率
- 批准号:
9354497 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Development of new predictive model for physical activity of children adjusting for body composition and typical motion
开发新的儿童体力活动预测模型,调整身体成分和典型运动
- 批准号:
21700700 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Model Predictive Control for Integrated Motion Planning and Control of Automated Vehicles
自动车辆集成运动规划和控制的模型预测控制
- 批准号:
460891204 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants