No-linear systematic understanding of genome-protein dynamics

对基因组-蛋白质动力学的非线性系统理解

基本信息

  • 批准号:
    12208004
  • 负责人:
  • 金额:
    $ 46.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2004
  • 项目状态:
    已结题

项目摘要

In this research, we have presented an application of genetic algorithms to the gene network inference problem. It is one of the active topics in recent Bioinformatics. The objective is to predict a regulating network structure of the interacting genes from observed outcome, i.e., expression pattern. The task consists of modeling the rules of regulation and inferring the network structure from observed data. The GA is applied to train the model with observed data to predict the regulatory pathways, represented as influence matrix. We have implemented a reverse engineering method based on genetic algorithms in a quantitative and linear biological framework. The merit of this approach is that it can be applied with small amount of data, optimize large amount of parameters simultaneously and can be applied on nonlinear models. The GA implementation includes multiple stage evolution and matrix chromosomes. This method has been applied on simulated expression patterns and experimentally obs … More erved expression patterns. In this research, we used the knowledge of designing electric circuit by GA.As for another important topic, we have proposed a dynamic differential Bayesian networks (DDBNs) and nonparametric regression model. This model is an extended model of traditional dynamic Bayesian networks (DBNs), which can incorporate temporal information in a natural way and directly handle real-valued data obtained from microarrays without any transformation. In addition, it can cope with differential information between gene expression levels, without any loss to the traditional advantage, i.e., the capability of estimating non-linear relationships between genes. We have applied DDBNs to analyze simulated data and real data, i.e., Saccharomyces cerevisiae cell cycle gene expression data. We have confirmed the effectiveness of our approach in the sense that some edges have been successfully detected only by DDBNs, not by DBNs.In recent years, base sequences have been increasingly unscrambled through attempts represented by the human genome project. Accordingly, the estimation of the genetic network has been accelerated. However, no definitive method has become available for drawing a large effective graph. To solve these difficulties, we have proposed a method which allows for coping with an increase in the number of nodes by laying out genes on planes of several layers and then overlapping these planes. This layout involves an optimization problem which requires maximizing the fitness function. To demonstrate the effectiveness of our approach, we show some graphs using actual data on 82 genes, 552 genes, and artificial data modeled from a scale-free network of 1,000 genes. We also described how to lay out nodes by means of stochastic searches, e.g., stochastic hill-climbing and simulating annealing methods. The experimental results have shown the superiority and usefulness of stochastic searches in comparison with the simple random search. Less
在本研究中,我们提出了遗传算法在基因网络推理问题中的应用。它是近年来生物信息学研究的热点之一。目的是从观察到的结果,即表达模式来预测相互作用基因的调节网络结构。该任务包括对规则建模和从观测数据推断网络结构。将遗传算法应用于用观测数据训练模型,以预测以影响矩阵表示的调控途径。我们在定量和线性生物学框架中实现了基于遗传算法的逆向工程方法。该方法的优点是可以应用于少量数据,同时优化大量参数,并且可以应用于非线性模型。遗传算法的实现包括多阶段进化和矩阵染色体。该方法已在模拟表达模式和实验中得到应用。在本研究中,我们运用遗传算法设计电路的知识。对于另一个重要课题,我们提出了一个动态微分贝叶斯网络(DDBNs)和非参数回归模型。该模型是传统动态贝叶斯网络(dbn)的扩展模型,可以自然地吸收时间信息,并直接处理从微阵列获取的实值数据,而无需进行任何转换。此外,它可以处理基因表达水平之间的差异信息,而不会失去传统的优势,即估计基因之间非线性关系的能力。我们利用ddbn分析模拟数据和真实数据,即酿酒酵母细胞周期基因表达数据。我们已经证实了我们的方法的有效性,因为一些边缘只被ddbn成功检测到,而不是被dbn成功检测到。近年来,通过以人类基因组计划为代表的尝试,碱基序列被越来越多地破译。从而加快了遗传网络的估计速度。然而,目前还没有确定的方法来绘制一个大的有效图。为了解决这些困难,我们提出了一种方法,该方法可以通过将基因放置在几层的平面上,然后将这些平面重叠来应对节点数量的增加。这种布局涉及到一个优化问题,要求最大化适应度函数。为了证明我们方法的有效性,我们展示了一些使用82个基因、552个基因的实际数据和从1000个基因的无标度网络建模的人工数据的图表。我们还描述了如何通过随机搜索,例如随机爬坡和模拟退火方法来布置节点。与简单的随机搜索相比,实验结果表明了随机搜索的优越性和实用性。少

项目成果

期刊论文数量(86)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
L.Chen and K.Aihara: "Stability and Bifurcation Analysis of Differential-Difference-Algebraic Equations"IEEE Trans.CASI. 48・3(印刷中).
L. Chen 和 K. Aihara:“微分代数方程的稳定性和分岔分析”IEEE Trans.CASI 48・3(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Iba, H., Mimura, A.: "Inference of a gene regulatory network by means of interactive evolutionary computing"Information sciences. 145(3-4). 225-236 (2002)
Iba, H., Mimura, A.:“通过交互式进化计算推断基因调控网络”信息科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Inference of a gene regulatory network by means of interactive evolutionary computing
  • DOI:
    10.1016/s0020-0255(02)00234-7
  • 发表时间:
    2002-09-01
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Iba, H;Mimura, A
  • 通讯作者:
    Mimura, A
H.Iba, S.Saeki, K.Asai, K.Takahashi, Y.Ueno, K.Isono: "Inference of Euler Angles for Single-particle Analysis by Means of Evolutionary Algorithms."Biosystems. 72/1-2. 43-55 (2003)
H.Iba、S.Saeki、K.Asai、K.Takahashi、Y.Ueno、K.Isono:“通过进化算法推断欧拉角用于单粒子分析。”生物系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
市瀬夏洋,合原一幸: "遺伝子ネットワークのダイナミクスについて"電子情報通信学会技術報告. NLP2000-91. 91-98 (2000)
Natsuhiro Ichise、Kazuyuki Aihara:“基因网络的动态”IEICE NLP2000-91 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IBA Hitoshi其他文献

IBA Hitoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IBA Hitoshi', 18)}}的其他基金

Program evolution of genetic programming based on probabilistic grammar
基于概率语法的遗传规划的程序演化
  • 批准号:
    21300090
  • 财政年份:
    2009
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Program Evolution by means of Estimation of Distribution Programming
通过分布规划估计进行程序演化
  • 批准号:
    19300075
  • 财政年份:
    2007
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interactive Evolutionary Computation with Generative Interaction
具有生成交互的交互式进化计算
  • 批准号:
    17300072
  • 财政年份:
    2005
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Researches on Emergent Design by means of Interactive Evolutionary Computation and Genetic Programming
交互式进化计算和遗传编程的应急设计研究
  • 批准号:
    15300040
  • 财政年份:
    2003
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Evolutionary Design by means of Genetic Programming
通过遗传编程进行进化设计
  • 批准号:
    13480088
  • 财政年份:
    2001
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Co-evolutionary Multi-agent Learning by means of Genetic Programming
通过遗传编程的协同进化多智能体学习
  • 批准号:
    11480071
  • 财政年份:
    1999
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

Towards Explainable AI Algorithms via Fitness Landscape Analysis in Evolutionary Computation
通过进化计算中的适应度景观分析实现可解释的人工智能算法
  • 批准号:
    2890959
  • 财政年份:
    2023
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Studentship
Establishment of a Novel Optimizer in Variational Quantum Eigensolver by Applying Evolutionary Computation
应用进化计算建立变分量子本征求解器的新型优化器
  • 批准号:
    23K11220
  • 财政年份:
    2023
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evolutionary computation for expensive bilevel multiobjective problems
昂贵的双层多目标问题的进化计算
  • 批准号:
    DP220101649
  • 财政年份:
    2022
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Discovery Projects
Study of distributed evolutionary computation for interrelated multi-objective optimization problems
相互关联的多目标优化问题的分布式进化计算研究
  • 批准号:
    22K12185
  • 财政年份:
    2022
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Multi-objective Evolutionary Computation Algorithms Based on Adaptive Operator Slection and Dynamic System Learning
基于自适应算子选择和动态系统学习的多目标进化计算算法的发展
  • 批准号:
    20K11997
  • 财政年份:
    2020
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-Objective Optimization of an Axial Flow Hydraulic Turbine with a Collection Device Using Evolutionary Computation Method and Elucidation of Water Collection Acceleration Action
使用进化计算方法对带有集水装置的轴流式水轮机进行多目标优化以及集水加速作用的阐明
  • 批准号:
    20K04258
  • 财政年份:
    2020
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of evolutionary computation method for dynamic scheduling
动态调度进化计算方法的发展
  • 批准号:
    20K04985
  • 财政年份:
    2020
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simultaneous Problem Set Optimization Using Evolutionary Computation
使用进化计算的同步问题集优化
  • 批准号:
    19K12135
  • 财政年份:
    2019
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on knowledge acquisition from fitness landscape for evolutionary computation
用于进化计算的适应度景观知识获取研究
  • 批准号:
    19J11792
  • 财政年份:
    2019
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of evolutionary computation techniques to realize human-out-of-the-loop
发展进化计算技术以实现人类脱离循环
  • 批准号:
    19H04179
  • 财政年份:
    2019
  • 资助金额:
    $ 46.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了