Adaptive data-driven predictive control using behavioral approach for autonomous powder compaction

使用行为方法进行自适应数据驱动的预测控制以实现自主粉末压实

基本信息

项目摘要

Powder compaction is a common dry granulation method to transfer powder material in compacts such as tablets. Industrial processes are mainly performed on rotary tablet presses, where multiple sub-processes are included. Feeding and blending of the powder component are subsequentially followed by the die filling with powder, powder compression and the ejection of the compact from the die. Hereby the temporal scales range from minutes (feeding, blending) to seconds (filling) and milliseconds (compression, ejection), but these processes are coupled with respect to the material flow. This leads to a complex control task, which aims for achieving the desired compact active content (dose) and radial fracture force (hardness) related to the product properties in terms of weight, active weight fraction, porosity and degree of lubrication. Established strategies for these control problems are currently based on human operator intervention, which is in general prone and predisposed for slow action and reaction. Therefore, the aim of this project is to replace human intervention by an autonomous control system for powder compaction.A key element for autonomous powder compaction is a process monitoring system capable of characterizing product quality deviations. To this end, a novel sensor system will be developed, which combines different methods (UV-Vis spectroscopy, NIR spectroscopy and machine data) and sensor types (direct, hybrid and soft). Thereby all sensors will be designed for in-situ determination to obtain a real-time feedback on the process state. The experimental data will be used to develop mathematical models for powder compaction. Different model classes including linear autoregressive models with exogenous inputs (ARX) and nonlinear autoregressive models (NARX) have to be considered due to the described complexity of the process. Crucial steps during model development are the raw data preprocessing, modelling of the process steps individually and connection of these. The obtained data-driven model is used to develop offline and online predictive control policies (DPC) algorithms with respect to the behavior theory. The theoretical basement is the formulation of optimal control problems (OCPs), while the aim is to optimize the process steps in a closed-loop powder compaction.In conclusion, we will develop and implement a control algorithm capable to autonomously adjust the product quality in terms of compact dose and hardness in powder compaction. Hereby autonomy implies an online self-adaption of the parameter set points for the different process steps and phases. During the start-up phase, the waste is minimized, while during manufacturing the production rate is maximized and process disturbances such as feed rate fluctuations are balanced. Thereby the product quality and process efficiency are enhanced in comparison to manual process management.
粉末压制是一种常见的干法制粒方法,用于将粉末材料转移到压实体如片剂中。工业工艺主要在旋转式压片机上进行,其中包括多个子工艺。粉末组分的进料和混合之后依次是用粉末填充模具、粉末压缩和从模具中排出压块。因此,时间尺度从分钟(进料、混合)到秒(填充)和毫秒(压缩、喷射),但是这些过程相对于材料流是耦合的。这导致了复杂的控制任务,其目的是实现与产品性质(重量、活性物重量分数、孔隙率和润滑程度)相关的期望的压实活性物含量(剂量)和径向断裂力(硬度)。这些控制问题的既定策略目前是基于人类操作员的干预,这是在一般倾向于和倾向于缓慢的行动和反应。因此,本项目的目标是通过粉末压制的自主控制系统来代替人工干预。自主粉末压制的关键要素是能够表征产品质量偏差的过程监控系统。为此,将开发一种新型传感器系统,该系统结合了不同的方法(紫外可见光谱,近红外光谱和机器数据)和传感器类型(直接,混合和软)。因此,所有的传感器将被设计用于现场确定,以获得关于过程状态的实时反馈。实验数据将被用来开发粉末压制的数学模型。由于所描述的过程的复杂性,必须考虑不同的模型类,包括具有外源输入的线性自回归模型(ARX)和非线性自回归模型(NARX)。模型开发过程中的关键步骤是原始数据预处理,单独建模过程步骤以及这些步骤的连接。所获得的数据驱动模型被用来开发离线和在线预测控制策略(DPC)算法相对于行为理论。理论基础是最优控制问题(OCPs)的制定,而目的是优化的闭环粉末压制的工艺步骤。总之,我们将开发和实现一种控制算法,能够自主调整产品质量的压实剂量和硬度在粉末压制。因此,自主性意味着不同工艺步骤和阶段的参数设定点的在线自适应。 在启动阶段,浪费最小化,而在制造过程中,生产率最大化,并平衡进料速率波动等过程干扰。因此,与人工过程管理相比,提高了产品质量和过程效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Naim Bajcinca其他文献

Professor Dr.-Ing. Naim Bajcinca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Naim Bajcinca', 18)}}的其他基金

Autonomous control of a process chain for CO2 carbonation by use of mine waste
利用矿山废物进行二氧化碳碳酸化的工艺链的自主控制
  • 批准号:
    504852622
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于高频信息下高维波动率矩阵估计及应用
  • 批准号:
    71901118
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
  • 批准号:
    11061041
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
  • 批准号:
    10575081
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
  • 批准号:
    2316675
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DMS/NIGMS 1: Data-driven Ricci curvatures and spectral graph for machine learning and adaptive virtual screening
DMS/NIGMS 1:用于机器学习和自适应虚拟筛选的数据驱动的 Ricci 曲率和谱图
  • 批准号:
    2245903
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Adaptive data-driven secondary control and cyberattack-resilient secondary control for AC microgrids
交流微电网的自适应数据驱动二次控制和抗网络攻击二次控制
  • 批准号:
    571554-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
LC-ACC interactions supporting adaptive, feedback-driven decisions
LC-ACC 交互支持自适应、反馈驱动的决策
  • 批准号:
    10688111
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Developing personalized persuasive technologies using an adaptive and data-driven approach
使用自适应和数据驱动的方法开发个性化说服技术
  • 批准号:
    RGPIN-2022-03689
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Developing personalized persuasive technologies using an adaptive and data-driven approach
使用自适应和数据驱动的方法开发个性化说服技术
  • 批准号:
    DGECR-2022-00377
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Non-invasive, image-based, in-vivo assessment of tumor hypoxia to guide hypoxia-driven adaptive radiation therapy
对肿瘤缺氧进行非侵入性、基于图像的体内评估,以指导缺氧驱动的适应性放射治疗
  • 批准号:
    10661802
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
LC-ACC interactions supporting adaptive, feedback-driven decisions
LC-ACC 交互支持自适应、反馈驱动的决策
  • 批准号:
    10529791
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Detection of Colorectal Cancer Adaptive Mutability May Justify Combination of Targeted- and Immune-Therapies
结直肠癌适应性突变的检测可能证明靶向治疗和免疫治疗相结合的合理性
  • 批准号:
    10289627
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了