Smart Microgel-Based Membranes for Enhanced Catalysis and Electrochemical Cells - From Understanding Structure to Custom-Designed Devices.
用于增强催化和电化学电池的智能微凝胶膜 - 从了解结构到定制设计的设备。
基本信息
- 批准号:505656154
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Catalysis, energy storage and conversion are at present of paramount societal relevance. Unfortunately, electrochemical potentials are basically known since one century and cannot be significantly enhanced. Therefore, the possibility to increase storage capacity and current flux is only possible by minimizing cells. This involves the development of smart membranes having thicknesses in the nanoscale. Moreover, such membranes should have smart properties allowing to control ion flux by external stimuli and having intrinsic safety properties e.g. self regulation of ion flux (current) upon overheating. Similar aspects apply to catalysis by nanoparticles (NP), which is highly effective due to NPs great specific surface. Anyhow, activity of NPs is difficult to control and the bare particles are difficult to separate from the product. In both contexts of smart membranes, the German partner has recently developed a way to cross-link microgels into macroscopic free-standing membranes which were found to exhibit resistance controlled by temperature. The microgels are made by copolymerisation of classical acrylamides and of photo- or electron beam-crosslinkable comonomers. However, at present many details of the local structure of these microgels are unknown, in particular how the comonomers (resp. nanoparticles) are spatially distributed, and how their distribution influences mechanical, resistive, or catalytic membrane properties. In a previous joint French-German project the Montpellier and the Bielefeld group have developed the tools which allow the determination of the structure of such copolymer microgels in detail by neutron scattering methods, based on isotopic substitution and computer simulations. The present project aims at exploiting and extending this knowledge to establish structure-property relations for smart microgel membranes. We will apply combinations of scattering, simulations, and imaging methods to specially-designed microgel particles containing different comonomers and catalytically-active nanoparticles in view of the formation of freestanding and crosslinked films. Then a similar analysis will be performed after film formation, and correlated with transport (resp. catalytic) properties. Based on this the partners will construct either first smart electrochemical devices, or proof-of-principle flow-through reactors with controllable catalytic activity.
催化、能量储存和转换目前具有重要的社会意义。不幸的是,电化学电势自世纪以来基本上是已知的,并且不能被显著地增强。因此,增加存储容量和电流通量的可能性只有通过最小化电池才有可能。这涉及具有纳米级厚度的智能膜的开发。此外,这种膜应该具有允许通过外部刺激控制离子通量的智能特性,并且具有固有的安全特性,例如在过热时离子通量(电流)的自调节。类似的方面适用于通过纳米颗粒(NP)的催化,由于NP的大比表面积,这是非常有效的。无论如何,NP的活性难以控制,并且裸颗粒难以与产物分离。在这两种智能膜的背景下,德国合作伙伴最近开发了一种将微凝胶交联成宏观独立膜的方法,发现这种膜具有受温度控制的电阻。微凝胶是由经典的丙烯酰胺和光或电子束交联共聚单体的共聚。然而,目前这些微凝胶的局部结构的许多细节是未知的,特别是共聚单体(分别为:纳米颗粒)在空间上分布,以及它们的分布如何影响机械、电阻或催化膜性能。在以前的一个法国-德国联合项目中,蒙彼利埃和比勒费尔德小组已经开发了工具,可以通过中子散射方法,基于同位素取代和计算机模拟,详细确定这种共聚物微凝胶的结构。本项目旨在利用和扩展这方面的知识,建立智能微凝胶膜的结构-性能关系。我们将应用散射,模拟和成像方法的组合,以专门设计的微凝胶颗粒含有不同的共聚单体和催化活性的纳米粒子,鉴于独立和交联膜的形成。然后在膜形成后进行类似的分析,并与传输(分别为催化)性质。在此基础上,合作伙伴将构建第一个智能电化学设备,或具有可控催化活性的原理验证流通反应器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas Hellweg其他文献
Professor Dr. Thomas Hellweg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas Hellweg', 18)}}的其他基金
Influence of Saponins on Lipid Bilayers
皂苷对脂质双层的影响
- 批准号:
315438106 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Core-shell nanoparticle microgel hybrids as smart carriers for catalysis
核壳纳米颗粒微凝胶混合物作为催化智能载体
- 批准号:
284427238 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Non-NIPAM based core-shell microgels with enhanced corset effect: Understanding and tuning of the volume phase transition
具有增强紧身胸衣效果的非 NIPAM 核壳微凝胶:体积相变的理解和调节
- 批准号:
258774625 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Enzym-katalysierte Reaktionen in Mikroemulsionen in der Volumenphase und an Grenzflächen: Zusammenhang zwischen Tensidfilm-Elastizität, Phasenstruktur und Reaktivität
本体相和界面微乳液中的酶催化反应:表面活性剂膜弹性、相结构和反应性之间的关系
- 批准号:
213524825 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Untersuchungen zur Steuerung der Struktur/Eigenschafts-Beziehung von intelligenten PNIPAM-Copolymer-Mikrogelen und Mikrogel-Nanopartikel-Kompositen
智能PNIPAM共聚物微凝胶及微凝胶-纳米粒子复合材料结构/性能关系的控制研究
- 批准号:
27255512 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Bicontinuous microemulsions in confinement - absorption into porous matrices, phase behavior and transport
限制中的双连续微乳液 - 吸收到多孔基质中、相行为和传输
- 批准号:
455432427 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
MicroLub: A novel microgel-based superlubricating formulation for fat replacement applications
MicroLub:一种基于微凝胶的新型超级润滑配方,适用于脂肪替代应用
- 批准号:
EP/X03514X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Translation of an innovative microgel technology for improving swallowing in the elderly
创新微凝胶技术改善老年人吞咽功能的转化
- 批准号:
ES/X006565/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Bioengineering Sustainable Microgel Particles and Multiscale Characterization of Material Properties
生物工程可持续微凝胶颗粒和材料特性的多尺度表征
- 批准号:
2826717 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10530989 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Predicting smart microgel swelling for copolymer microgels
预测共聚物微凝胶的智能微凝胶膨胀
- 批准号:
563037-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Utilization of food-grade microgel particles for the design of health-beneficial breads and noodles
利用食品级微凝胶颗粒设计有益健康的面包和面条
- 批准号:
20K13797 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10672059 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Clickable Microgel Scaffolds for MSC Expansion and Delivery
用于 MSC 扩展和交付的可点击微凝胶支架
- 批准号:
9884753 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Clickable Microgel Scaffolds for MSC Expansion and Delivery
用于 MSC 扩展和交付的可点击微凝胶支架
- 批准号:
10356090 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10223925 - 财政年份:2019
- 资助金额:
-- - 项目类别: