Aqueous Electrolytes in Nanoporous Media: Structure, Dynamics and Electrochemo-Mechanical Actuation

纳米多孔介质中的水电解质:结构、动力学和电化学机械驱动

基本信息

项目摘要

An electrolyte solution near a charged solid surface forms an electric double layer (EDL). While the theory of EDLs has been known since the 1850s, their structure and dynamics are much less understood in the confined geometry of nanoporous media. There, large interfacial curvatures and overlapping EDLs of opposing interfaces can lead to significant property changes compared to planar geometries. Furthermore, EDL formation can lead to changes in mechanical interfacial stresses at the single pore scale and thus to macroscopic material deformation. In this project, this electrochemo-mechanical actuation will be related to the structure and dynamics of the EDL for aqueous electrolytes in nanoporous carbons. For this purpose, experiments and molecular simulation will be combined from the nanoscopic single-pore scale to the macroscopic scale of the porous medium.We will synthesize electrically conducting nanoporous carbons with high specific surface area, defined pore sizes (1-10 nm) and pore geometries. This will allow fine-tuning of the effect of the interfacial region compared to the rest of the pore volume. By adding heteroatoms to the carbon structure and controlling the defect concentrations, different surface chemistries (hydrophobic vs. hydrophilic) are introduced. Depending on the applied electrical voltage between electrolyte and solid, the surface chemistry and the pore diameter, we will investigate EDL formation and mechanical actuation in the material. We will focus on aqueous solutions of simple salts and investigate the role of salt concentration among other parameters. We will use synchrotron-based X-ray scattering to study the EDL in-operando, with special attention to the charge/discharge and thus ion transport kinetics. We will use molecular dynamics simulations to represent the structural properties of the surface of the nanoporous medium and the electrolyte. This should allow us to derive the structural, thermodynamic and transport properties of the geometrically confined electrolyte and relate them to the experimental results, both in terms of the electrochemo-mechanical couplings and the charge capacities at the scale of the single pore and the porous medium.In addition to these fundamental insights into aqueous electrolytes in geometric confinement, these studies provide the basis for supercapacitors with green, water-based electrolytes. They will also contribute to the development of materials for electromechanical actuators based on novel actuation principles, avoiding the usual piezoceramic systems that contain predominantly environmentally hazardous materials, such as lead.
带电固体表面附近的电解质溶液形成双电层(EDL)。虽然 EDL 理论自 1850 年代以来就为人所知,但在纳米多孔介质的受限几何形状中,人们对其结构和动力学的了解却少得多。在那里,与平面几何形状相比,大的界面曲率和相对界面的重叠 EDL 可能会导致显着的性能变化。此外,EDL 的形成会导致单孔尺度机械界面应力的变化,从而导致宏观材料变形。在该项目中,这种电化学机械驱动将与纳米多孔碳中水性电解质的 EDL 的结构和动力学相关。为此,实验和分子模拟将从纳米级单孔尺度到多孔介质的宏观尺度相结合。我们将合成具有高比表面积、确定的孔径(1-10 nm)和孔隙几何形状的导电纳米多孔碳。与其余孔体积相比,这将允许微调界面区域的效果。通过在碳结构中添加杂原子并控制缺陷浓度,引入了不同的表面化学性质(疏水性与亲水性)。根据电解质和固体之间施加的电压、表面化学和孔径,我们将研究材料中 EDL 的形成和机械驱动。我们将重点关注简单盐的水溶液,并研究盐浓度在其他参数中的作用。我们将使用基于同步加速器的 X 射线散射来研究 EDL 操作过程,特别关注充电/放电以及离子传输动力学。我们将使用分子动力学模拟来表示纳米多孔介质和电解质表面的结构特性。这应该使我们能够推导出几何限制电解质的结构、热力学和输运特性,并将它们与实验结果联系起来,无论是在电化学-机械耦合方面还是在单孔和多孔介质尺度的充电容量方面。除了对几何限制中水性电解质的这些基本见解之外,这些研究还为具有绿色、 水基电解质。他们还将致力于开发基于新颖驱动原理的机电驱动器材料,避免使用主要含有铅等对环境有害的材料的常见压电陶瓷系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Fröba其他文献

Professor Dr. Michael Fröba的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Fröba', 18)}}的其他基金

Property Changes of Multiphasic Fluids by Geometrical Confinement in Advanced Mesoporous Materials
先进介孔材料中几何约束引起的多相流体性质变化
  • 批准号:
    407319385
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mesoporöse, organisch-anorganische Festkörper mit chiraler Grenzfläche
具有手性界面的介孔有机-无机固体
  • 批准号:
    44335999
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Nanoskalige Materialien für den Einsatz in Elektroden und Elektrolyten von Lithium- Hochleistungsbatterien
用于高性能锂电池电极和电解质的纳米材料
  • 批准号:
    48165871
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effect of reduced lateral dimensions on the optical and magnetic properties of dilute magnetic and antiferromagnetic nanowires
减少横向尺寸对稀磁和反铁磁纳米线光学和磁性能的影响
  • 批准号:
    5428761
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Synthesis and characterization of organized (magnetic) semi-conductor nanowires
有序(磁性)半导体纳米线的合成和表征
  • 批准号:
    5166420
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Synthese, Charakterisierung und Funktionalisierung mesoporöser Bor-, Aluminium- und Galliumphosphate aus molekularen Vorstufen
从分子前体合成介孔硼、铝和镓磷酸盐的合成、表征和功能化
  • 批准号:
    5213718
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Untersuchungen zur Reaktivität von mesostrukturierten metallischen, intermetallischen sowie metalloxidischen Phasen
研究介观结构金属、金属间化合物和金属氧化物相的反应性
  • 批准号:
    5124708
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Synthese, Charakterisierung und Funktionalisierung mesostrukturierter Metallchalkogenide
介孔结构金属硫属化物的合成、表征和功能化
  • 批准号:
    5084030
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Radical-containing Porous Organosilica Host Phases Studied by Advanced Electron Paramagnetic Resonance Techniques
通过先进电子顺磁共振技术研究含自由基的多孔有机二氧化硅主相
  • 批准号:
    429839772
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effect of nanoporous confinement on the phase behaviour of aqueous solutions
纳米孔约束对水溶液相行为的影响
  • 批准号:
    530248875
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
  • 批准号:
    DP240102728
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
  • 批准号:
    2339175
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Understanding the mechanosynthesis mechanism of solid-state electrolytes via in-situ synchrotron XRD
通过原位同步加速器 XRD 了解固态电解质的机械合成机制
  • 批准号:
    24K17553
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
  • 批准号:
    2347542
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
  • 批准号:
    2319151
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Understanding the Key to Unlocking Fast Li-ion Conduction in Fluoride-based Solid Electrolytes
了解氟化物固体电解质中实现快速锂离子传导的关键
  • 批准号:
    2329953
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Tailoring Quasi-Solid-State 'Water-in-Swelling-Clay' Electrolytes for High-Voltage, Durable Aqueous Zinc-Ion Batteries
为高压、耐用的水性锌离子电池定制准固态“膨胀粘土中的水”电解质
  • 批准号:
    2324593
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329651
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了