Aqueous Electrolytes in Nanoporous Media: Structure, Dynamics and Electrochemo-Mechanical Actuation
纳米多孔介质中的水电解质:结构、动力学和电化学机械驱动
基本信息
- 批准号:509293944
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
An electrolyte solution near a charged solid surface forms an electric double layer (EDL). While the theory of EDLs has been known since the 1850s, their structure and dynamics are much less understood in the confined geometry of nanoporous media. There, large interfacial curvatures and overlapping EDLs of opposing interfaces can lead to significant property changes compared to planar geometries. Furthermore, EDL formation can lead to changes in mechanical interfacial stresses at the single pore scale and thus to macroscopic material deformation. In this project, this electrochemo-mechanical actuation will be related to the structure and dynamics of the EDL for aqueous electrolytes in nanoporous carbons. For this purpose, experiments and molecular simulation will be combined from the nanoscopic single-pore scale to the macroscopic scale of the porous medium.We will synthesize electrically conducting nanoporous carbons with high specific surface area, defined pore sizes (1-10 nm) and pore geometries. This will allow fine-tuning of the effect of the interfacial region compared to the rest of the pore volume. By adding heteroatoms to the carbon structure and controlling the defect concentrations, different surface chemistries (hydrophobic vs. hydrophilic) are introduced. Depending on the applied electrical voltage between electrolyte and solid, the surface chemistry and the pore diameter, we will investigate EDL formation and mechanical actuation in the material. We will focus on aqueous solutions of simple salts and investigate the role of salt concentration among other parameters. We will use synchrotron-based X-ray scattering to study the EDL in-operando, with special attention to the charge/discharge and thus ion transport kinetics. We will use molecular dynamics simulations to represent the structural properties of the surface of the nanoporous medium and the electrolyte. This should allow us to derive the structural, thermodynamic and transport properties of the geometrically confined electrolyte and relate them to the experimental results, both in terms of the electrochemo-mechanical couplings and the charge capacities at the scale of the single pore and the porous medium.In addition to these fundamental insights into aqueous electrolytes in geometric confinement, these studies provide the basis for supercapacitors with green, water-based electrolytes. They will also contribute to the development of materials for electromechanical actuators based on novel actuation principles, avoiding the usual piezoceramic systems that contain predominantly environmentally hazardous materials, such as lead.
靠近带电固体表面的电解质溶液形成双电层(EDL)。虽然自19世纪50年代以来,人们就已经知道了EDLs的理论,但在纳米多孔介质的受限几何形状中,人们对它们的结构和动力学知之甚少。在那里,大的界面曲率和相对界面的重叠EDL可以导致与平面几何形状相比的显著的性质变化。此外,EDL的形成可以导致在单个孔隙尺度下的机械界面应力的变化,从而导致宏观材料变形。在这个项目中,这种电化学机械驱动将与纳米多孔碳中的水性电解质的EDL的结构和动力学有关。为此,我们将结合实验和分子模拟,从纳米级的单孔尺度到多孔介质的宏观尺度,合成具有高比表面积、确定孔径(1-10 nm)和孔几何形状的导电纳米多孔碳。这将允许与孔体积的其余部分相比微调界面区域的效果。通过向碳结构中添加杂原子并控制缺陷浓度,引入了不同的表面化学性质(疏水性与亲水性)。根据电解质和固体之间施加的电压、表面化学和孔径,我们将研究材料中的EDL形成和机械致动。我们将专注于简单盐的水溶液,并研究盐浓度在其他参数中的作用。我们将使用同步加速器为基础的X射线散射研究的EDL在operando,特别注意的充电/放电,从而离子传输动力学。我们将使用分子动力学模拟来表示纳米多孔介质和电解质的表面的结构特性。这将使我们能够推导出几何限制电解质的结构,热力学和传输特性,并将它们与实验结果联系起来,无论是在电化学-机械耦合方面,还是在单孔和多孔介质的尺度上的电荷容量。除了这些对几何限制中的水性电解质的基本见解之外,这些研究还为具有绿色,水基电解质。它们还将有助于开发基于新型致动原理的机电致动器材料,避免使用通常的压电陶瓷系统,这些系统主要含有铅等对环境有害的材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Fröba其他文献
Professor Dr. Michael Fröba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Fröba', 18)}}的其他基金
Property Changes of Multiphasic Fluids by Geometrical Confinement in Advanced Mesoporous Materials
先进介孔材料中几何约束引起的多相流体性质变化
- 批准号:
407319385 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Mesoporöse, organisch-anorganische Festkörper mit chiraler Grenzfläche
具有手性界面的介孔有机-无机固体
- 批准号:
44335999 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Nanoskalige Materialien für den Einsatz in Elektroden und Elektrolyten von Lithium- Hochleistungsbatterien
用于高性能锂电池电极和电解质的纳米材料
- 批准号:
48165871 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Effect of reduced lateral dimensions on the optical and magnetic properties of dilute magnetic and antiferromagnetic nanowires
减少横向尺寸对稀磁和反铁磁纳米线光学和磁性能的影响
- 批准号:
5428761 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Priority Programmes
Synthesis and characterization of organized (magnetic) semi-conductor nanowires
有序(磁性)半导体纳米线的合成和表征
- 批准号:
5166420 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Priority Programmes
Synthese, Charakterisierung und Funktionalisierung mesoporöser Bor-, Aluminium- und Galliumphosphate aus molekularen Vorstufen
从分子前体合成介孔硼、铝和镓磷酸盐的合成、表征和功能化
- 批准号:
5213718 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Priority Programmes
Untersuchungen zur Reaktivität von mesostrukturierten metallischen, intermetallischen sowie metalloxidischen Phasen
研究介观结构金属、金属间化合物和金属氧化物相的反应性
- 批准号:
5124708 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Priority Programmes
Synthese, Charakterisierung und Funktionalisierung mesostrukturierter Metallchalkogenide
介孔结构金属硫属化物的合成、表征和功能化
- 批准号:
5084030 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Priority Programmes
Radical-containing Porous Organosilica Host Phases Studied by Advanced Electron Paramagnetic Resonance Techniques
通过先进电子顺磁共振技术研究含自由基的多孔有机二氧化硅主相
- 批准号:
429839772 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Effect of nanoporous confinement on the phase behaviour of aqueous solutions
纳米孔约束对水溶液相行为的影响
- 批准号:
530248875 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
- 批准号:
DP240102728 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
- 批准号:
DP240101407 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
CAREER: Elucidating the Correlative Interfacial Solvation, Nucleation, and Growth Processes in Battery Electrolytes
职业:阐明电池电解质中相关的界面溶剂化、成核和生长过程
- 批准号:
2339175 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Understanding the mechanosynthesis mechanism of solid-state electrolytes via in-situ synchrotron XRD
通过原位同步加速器 XRD 了解固态电解质的机械合成机制
- 批准号:
24K17553 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
- 批准号:
2347542 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
- 批准号:
2319151 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Understanding the Key to Unlocking Fast Li-ion Conduction in Fluoride-based Solid Electrolytes
了解氟化物固体电解质中实现快速锂离子传导的关键
- 批准号:
2329953 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Tailoring Quasi-Solid-State 'Water-in-Swelling-Clay' Electrolytes for High-Voltage, Durable Aqueous Zinc-Ion Batteries
为高压、耐用的水性锌离子电池定制准固态“膨胀粘土中的水”电解质
- 批准号:
2324593 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
- 批准号:
2329651 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
- 批准号:
2329652 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




