Scaling Invariant Multidimensional Projections for Visualization

缩放不变多维投影以实现可视化

基本信息

项目摘要

Finding good projections from multi-dimensional data domains to the 2D screen is a standard problem in many fields. Multidimensional data usually considered in Multifield Visualization (a subfield of Scientific Visualization) often comes with the property that the dimensions are measured in different physical units, making the ratio between arbitrary. We propose to develop projection techniques that are independent of the chosen physical unit of each dimension, i.e., they are invariant on the scaling of each dimension. While many standard measures and features do not have this scaling invariance (such as relative Euclidean distance, PCA, t-SNE), simple solutions like normalization of each dimension does not solve the problem adequately. We propose to develop scaling invariant versions of standard automatic non-linear projection techniques such as t-SNE. Also, we search for scaling invariant versions of linear projections (such as PCA), as well as for standard clustering techniques.We see the main application of scaling invariant projection techniques in the visual analysis of multifield data.
寻找从多维数据域到二维屏幕的良好投影是许多领域的标准问题。通常在多场可视化(科学可视化的一个子领域)中考虑的多维数据通常具有以不同的物理单位测量维度的属性,使得它们之间的比率是任意的。我们建议开发独立于每个维度所选择的物理单位的投影技术,即它们在每个维度的缩放上是不变的。虽然许多标准度量和特征不具有这种尺度不变性(如相对欧几里得距离、PCA、t-SNE),但像每个维度的归一化这样的简单解决方案并不能充分解决问题。我们建议开发标准自动非线性投影技术(如t-SNE)的缩放不变版本。此外,我们还搜索线性投影的缩放不变版本(如PCA),以及标准聚类技术。我们看到了尺度不变投影技术在多场数据可视化分析中的主要应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Holger Theisel其他文献

Professor Dr.-Ing. Holger Theisel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Holger Theisel', 18)}}的其他基金

DNS and Visual Analysis of Superstructures in Turbulent Channels with Mixing by Parallel Injection
并行注入混合湍流通道中上层建筑的 DNS 和可视化分析
  • 批准号:
    429361363
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Gradient-Preserving Cuts for Scalar Representations of Vector Fields
矢量场标量表示的梯度保持切割
  • 批准号:
    418328199
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Steadification of Unsteady Vector Fields for Flow Visualization
用于流可视化的不稳定矢量场的稳定化
  • 批准号:
    309227598
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multitype Multifield Visualization
多类型多场可视化
  • 批准号:
    271732629
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
On-the-fly postprocessing and feature extraction of flame and flow properties obtained by Direct Numerical Simulations
通过直接数值模拟获得的火焰和流动特性的动态后处理和特征提取
  • 批准号:
    250921653
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Sharp Ridge Structures in Flow Visualization
流动可视化中的尖锐脊结构
  • 批准号:
    224905231
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion
职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架
  • 批准号:
    2340261
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
  • 批准号:
    2349623
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
  • 批准号:
    2348792
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Toward a scale invariant theory for the early Universe and elementary particles
早期宇宙和基本粒子的尺度不变理论
  • 批准号:
    23K03383
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Data-Driven Invariant Sets for Provably Safe Autonomy
协作研究:数据驱动的不变集可证明安全的自治
  • 批准号:
    2303157
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
On a Combinatorial Characterization of Dynamical Invariant Sets of Regulatory Networks
关于调节网络动态不变集的组合表征
  • 批准号:
    23K03240
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identifying patient invariant parameters for diagnosis using terahertz sensing
使用太赫兹传感识别患者不变参数进行诊断
  • 批准号:
    2869381
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A study of solutions of the Painleve equation derived from monodromy invariant Hermitian forms.
研究从单向不变埃尔米特形式导出的 Painleve 方程的解。
  • 批准号:
    22KJ2518
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了